Меню

Методы экстраполяции предполагают исследование тест



Методы экстраполяции

В методическом плане основным инструментом любого прогноза является схема экстраполяции. Сущность экстраполяции заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций развития объекта прогноза и переносе их на будущее.

Различают формальную и прогнозную экстраполяцию. Формальная базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта прогноза; при прогнозной фактическое развитие увязывается с гипотезами о динамике исследуемого процесса с учетом изменений влияния различных факторов в перспективе.

Методы экстраполяций являются наиболее распространенными и проработанными. Основу экстраполяционных методов прогнозирования составляет изучение динамических рядов. Динамический ряд — это множество наблюдений, полученных последовательного времени.

В экономическом прогнозировании широко применяется метод математической экстраполяции, в математическом смысле означающий распространение закона изменения функции из области ее наблюдения на область, лежащую внё отрезка

наблюдения. Тенденция, описанная некоторой функцией от времени, называется трендом. Тренд это длительная тенденция изменения экономических показателей. Функция представляет собой простейшую математико-статистическую (трендовую) модель изучаемого явления.

Следует отметить, что методы экстраполяции необходимо применять на начальном этапе прогнозирования для выявления тенденции изменения показателей.

Рассмотрим методы экстраполяции, которые целесообразно применять в переходный период к рыночным отношениям при изменяющихся условиях функционирования экономики.

Метод подбора функций — один из распространенных методов экстраполяции. Главным этапом экстраполяции тренда является выбор оптимального вида функции, описывающей эмпирический ряд. Для этого проводятся предварительная обработка и преобразование исходных данных с целью облегчения выбора вида тренда путем сглаживания и выравнивания временного ряда. Задача выбора функции заключается в подборе по фактическим данным ( ) формы зависимости (линии) так, чтобы отклонения ( ) данных исходного ряда от соответствующих расчетных , находящихся на линии, были наименьшими (рис. 5.2). После этого можно продолжить эту линию и получить прогноз.

Расчет параметров (а, b) для конкретной функциональной зависимости осуществляется методом наименьших квадратов (МНК) и его модификаций. Суть МНК состоит в отыскании параметров модели тренда, минимизирующих отклонения расчётных значении от соответствующих значений исходного ряда, т.е. искомые параметры должны удовлетворять условию

Где n — число наблюдений.

Выбор модели осуществляется с помощью специально разработанных программ. Есть программы, предусматривающие возможность моделирования экономических рядов по 16-ти функциям: линейной (у = а + bх), гиперболической различных типов (у = а + b/х), экспоненциальной, степенной, логарифмической и др. Каждая из них может иметь свою, специфическую область применения при прогнозировании экономических явлений.

Так, линейная функция (у = а + bх) (рис. 5.3) применяется для описания процессов, равномерно развивающихся во времени. Параметр b (коэффициент регрессии) показывает скорость изменения прогнозируемого у при изменении х.

Гиперболы (рис. 5.4) хорошо описывают Процессы, характеризующиеся насыщением, когда существует фактор, сдерживающий рост прогнозируемого показателя.

Модель выбирается, во-первых, визуально, на основе сопоставления вида кривой, ее специфических свойств и качественной характеристики тенденции экономического явления; во-вторых, исходя из значения критерия. В качестве критерия чаще всего используется сумма квадратов отклонений S. Из совокупности функций выбирается та, которой соответствует минимальное значение S.

Прогноз предполагает продление тенденции прошлого, выражаемой выбранной функцией, в будущее, т.е. экстраполяцию динамического ряда. Программным путем на ЭВМ определяется значение прогнозируемого показателя. Для этого в формулу,

описывающую процесс, подставляется величина периода, на который необходимо получить прогноз.

В связи с тем, что этот метод исходит из инёрционности экономических явлений и предпосылок, что общие условия, определяющие развитие в прошлом, не претерпят существенных изменений в будущем, его целесообразно использовать при разработке краткосрочных прогнозов обязательно в сочетании с методами экспертных оценок. Причем динамический ряд может строиться на основании данных не по годам, а по месяцам, кварталам.

Экстраполяция методом подбора функций учитывает все данные исходного ряда с одинаковым “весом”. Классический метод Наименьших квадратов предполагает равноценность исходной информации в модели. Однако, как показывает опыт, экономические показатели имеют тенденцию “старения”. Влияние более поздних наблюдений на развитие процесса в будущем существеннее, чем более ранних. Проблему “старения” данных Динамических рядов решает метод экспоненциального сглаживания с регулируемым трендом. Он позволяет построить такое описание процесса (динамического ряда), при котором более поздним наблюдениям придаются большие “веса” по сравнению с более ранними, причем “веса” наблюдений убывают по экспоненте. В результате создается возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения.

Скорость старения данных характеризует параметр сглаживания а. Он изменяется в пределах 0

В области экономического прогнозирования наиболее употребимы пределы 0,05

Источник

Методы экстраполяции

Экстраполяция представляет метод прогнозирования, заключающийся в изучении сложившихся в прошлом и настоящем устойчивых тенденций развития процессов и явлений и переносе их на будущее. Метод экстраполяции применим, если используются следующие допущения: а) период времени, для которого построена функция, должен быть достаточным для выявлении тенденции развития; б) анализируемый процесс является устойчиво динамическим и обладает инерционностью, т.е. для значительных изменений характеристик процесса требуется время; в) не ожидается сильных внешних воздействий на изучаемый процесс, которые могут серьезно повлиять на тенденцию развития. Прогнозирование с помощью метода экстраполяции – один из простейших методов статистического прогнозирования. Его использование оправдано при недостаточном знании о природе изучаемого явления или отсутствии данных, необходимых для применения более совершенных методов прогнозирования.

Различают а) простую экстраполяцию, которая предполагает, что все действовавшие в прошлом и настоящем тенденции сохранятся в полном объеме, так как все действовавшие факторы останутся неизменными; б) прогнозную экстраполяцию, которая базируется на предположении об изменении факторов, определяющих динамику изучаемого процесса или явления.

Основу экстраполяции составляет изучение динамических рядов, представляющих собой упорядоченные во времени наборы измерений тех или иных показателей исследуемого объекта. В основе динамического анализа лежит понятие траектории, которая описывает состояние изучаемого процесса как функцию от времени: Q = Q(t), t [0,T], [0,T] – отрезок времени.

При этом время может учитываться как по интервалам, так и непрерывно. В первом случае функция называется динамическим рядом.

Использование экстраполяции имеет в своей основе предположение о том, что рассматриваемый процесс представляет собой сочетание двух составляющих: регулярной составляющей (Хt) и случайной переменной ( ). Временной ряд может условно представлен в виде: Yt = Xt + t.

Регулярная составляющая называется трендом, тенденцией и характеризует существующую динамику развития процесса в целом. Случайная составляющая отражает случайные колебания (шумы процесса).

Показателями развития процесса являются абсолютный прирост, темп роста, темп прироста. Показатели изменения динамического ряда могут вычисляться на постоянной и переменой базе. Для обобщающей оценки скорости и интенсивности изменения динамического ряда используются различные средние характеристики, среди которых являются средний темп роста и средний темп прироста. Средний темп роста рассчитывают как среднее геометрическое и как среднее параболическое. Среднее геометрическое рассчитывается из последовательных цепных темпов роста: ; среднее параболическое ориентировано на сумму динамического ряда и определяется из уравнения:

Задача ППЭ состоит в определении вида экстраполирующих функций Хt и t на основе исходных эмпирических данных и параметров выбранной функции.

Методика построения трендовых моделей представляет сочетание качественного экономического анализа и формальных математико-статистических методов и включает несколько этапов: 1) Выбор класса функции тренда. Существует более 40 временных функций, отличающихся своими свойствами. Надо выбрать ту, которая отражает главные особенности динамики исследуемого показателя, прежде всего тип развития. Можно выделить 4 типа экономического роста: постоянный, увеличивающийся, уменьшающийся и рост с качественными изменениями характеристик на протяжении рассматриваемого периода. 2) Оценка параметров функции. Он проводится методами регрессионного анализа. 3) Расчет значений формальных критериев аппроксимации. Для характеристики близости тренда к аппроксимируемому динамическому ряду применяют несколько формальных критериев: сумма квадратов отклонений значений тренда от фактических значений, значение коэффициента детерминации и т.д. 4) Анализ остаточной компоненты динамического ряда. 5) Выбор функции тренда. Результатом предшествующих этапов является построение нескольких функций тренда для одного показателя. Выбор лучшей осуществляется путем сопоставления значений, возможностей экономической интерпретации и использования в прогнозировании.

МЕТОД ЛИНЕЙНОЙ экстраполяции. Сущность метода заключается в том, что прогнозные величины определяются на основе среднего прироста (снижения) исследуемого показателя за определенный период времени.

Пример. Предположим, у нас имеются данные об объеме ВНП страны за ряд лет:

Таблица — Объем ВНП страны

Год Объем ВНП Прирост ВНП
16,0
21,8 5,8
27,0 5,2
32,0 5,0
36,8 4,8

Рассчитаем средний темп прироста за четыре года: (5,8 + 5,2 + 5,0 + 4,8)/4 = 5,2

Определив средний темп прироста, рассчитаем прогнозное значение ВНП страны на 2000 год: Y2000 = Y1999 + Y = 36,8 + 5,2 = 42,0

В тех случаях, когда показатели базисного и конечного прогнозного периода известны и следует определить годовые промежуточные показатели, используют метод линейной интерполяции, рассчитывая средний прирост за данный период времени:

Пример: Y2000= 205, Y2005 = 240. Y = (240 — 205)/5 = 7.

Y2002 = Y2000 + 2* Y = 205 + 2*7 = 219.

МЕТОД ПРОСТОЙ СРЕДНЕЙ. Применяется в тех случаях, когда в уравнении линейной зависимости Y = a + bx, коэффициент b = 0. При таком условии график будет представлен прямой параллельной горизонтальной оси графика, а прогноз будет состоять в расчете простой средней из всех имеющихся данных: Y = Y/N.

Расчеты простой средней часто связывают с сезонными колебаниями, происходящими внутри общего тренда.

Пример. Имеются данные об объеме ВНП за ряд лет по кварталам:

Год 1 квартал 2 квартал 3 квартал В целом за год
Итого
Средний объем 294,5

Рассчитываем квартальный индекс: 1 квартал = 272:294,5 = 0,92; 2 квартал = 404:294,5 = 1,37;

3 квартал = 300:294,5 = 1,02; 4 квартал = 203:294,5 = 0,69.

Для того, чтобы составить прогноз объема ВНП по кварталам на 2000 год, надо прогнозное значение ВНП за данный год разделить на 4(количество кварталов) и умножить на соответствующий квартальный индекс. Предположим, что в 2000 году ВНП будет равен 1450. Тогда в 1 квартале будет произведено: (1450:4)*0,92= 333,5; 2 квартал = (1450:4)*1,37 = 496,625 и т.д.

МЕТОД наименьших квадратов. Позволяет подогнать функцию под некоторый набор численных значений и построить график функции по некоторой совокупности точек. Выбор этой функции считается наилучшим, если стандартное отклонение определяемое формулой:

E = (dt – d’t) 2 min оказывается сведено к минимальному значению.

dt – фактические данные,

d`t – данные рассчитанной функции.

Как правило, используется линейная функция Y = a + bx.

Задача состоит в том, чтобы определить значения а и b, где

а – значение Y в базисном периоде,

b – угол наклона прямой.

Чтобы определить значения a и b используется система уравнений:

Y = a x + b x 2 , где N — число периодов

х – номер периода.

Пример. Имеются данные об объеме ВНП.

Год Y (ВНП) x x 2 xY Y сглаженный
108,4
108,4 + 4,7 = 113,1
108,4 + 2* 4,7 = 117,8
108,4 + 3* 4,7 = 122,5
108,4 + 4* 4,7 = 127,2

Система уравнений выглядит следующим образом: 589 = 5а + 10b

Решая их, находим а = 108,4, b = 4,7.

Можно рассчитать ВНП 2000 года : Y2000 = Y1995 + 5b = 108,4 + 5*4,7 = 131,9.

В отдельных случаях лучшего соответствия теоретических данных эмпирическим можно достигнуть вычерчивая по точкам кривой сглаживания вида Y = ab x , т.е. используя показательную функцию.

Если показательное уравнение логарифмировать, то значения коэффициентов а и можно определить методом наименьших квадратов:

log Y = log a + x* log b.

log a и log b находят, решая нормальные уравнения: log Y = N log a + x log b.

Читайте также:  Тест несуществующее животное цель методики

x log Y = x log a + x 2 log b.

Если определить х таким образом, что x = 0, то

log a = log Y/ N, log b = x log Y/ x 2 .

МЕТОД СКОЛЬЗЯЩЕЙ СРЕДНЕЙ. При подготовке прогноза методом скользящей привязки число периодов, по которым производится суммирование фактических данных, несколько больше того числа, которое было установлено и которое желательно иметь для проведения необходимых расчетов. Необходимость выравнивания сезонных колебаний требует, чтобы суммарная продолжительность всех периодов была равна 1 году. Выравнивание сезонных колебаний происходит в силу того, что крайние значения тренда имеют тенденцию к взаимному погашению. Вовлечение в расчет скользящей средней большего числа временных периодов увеличивает эффект сглаживания и одновременно уменьшает чувствительность прогноза к данным последних периодов.

Движение скользящей средней во времени дает возможность учесть самую последнюю информацию и отказаться от использования более старых данных. Использование скользящей средней позволит подготовить качественный прогноз только тогда, когда данные будут относительно стабильны.

Индекс сезонных колебаний, вычисленный на основе скользящей средней, дает возможность улучшить качество прогноза. Индекс получают путем деления объема фактического производства в соответствующем периоде на величину центрированной скользящей средней за тот же период. Повысить надежность можно за счет усреднения значения нескольких индексов общих временных периодов.

Пример. Для разработки прогноза на 2000 год используем данные о квартальных объемах производства. Скользящие средние определяются исходя из разбивки года на кварталы. Можно рассчитать скользящую среднюю только за 2 квартал 1995 года путем деления суммы данных за четыре квартала данного года на 4: (190+370+300+220)/4= 270.

Для расчета следующей скользящей средней берут данные за 2-4 кварталы 1995 года и 1 квартал 1996 года. Аналогично поступают в дальнейшем.

Центрированная скользящая средняя находится только для третьего квартала путем деления суммы данных скользящей средней за 2 и 3 кварталы 1995 года: (270+292)/2 = 281.

Дальнейшие расчеты делаются аналогично, заменяя одно значение другим.

Индекс сезонных колебаний получают путем деления фактического объема производства на величину центрированной скользящей средней за тот же период. Для 3 квартала 1995 года: 300:281 = 1,07.

Таблица. Расчет значений скользящей средней и индексов сезонных колебаний

Год Квартал Объем производства Скользящая средняя Центрированная скользящая средняя Индекс сезонных колебаний
(190+370+300+220):4=270
(370+300+220+280):4=292 (270+292):2 = 281 1.07
(300+220+280+420):4=305 (292+305):2= 298,5 0,74
(220+280+420+310):4=307 (305+307):2= 306 0,91
(280+420+310+180):4=297 (307+297):2= 302 1,39
1,04
287,5 0,63
276,5 0,98
1,32
1,00
286,5 0,66
301,5 1,00
1,42
307,5 0,94
0,64
1,01
322,5 1,37

На основе рассчитанных данных индекса сезонных колебаний заполняем таблицу 2 и делаем расчет скорректированного индекса.

Таблица 2 Расчет скорректированного индекса сезонных колебаний

Год 1 квартал 2 квартал 3 квартал 4 квартал
1.07 0,74
0,91 1,39 1,04 0,63
0,98 1,32 1,00 0,66
1,00 1,42 0,94 0,64
1,01 1,37
Итого 3,90 5,50 4,05 2,67
Средний индекс сезонных колебаний 0.975 1,375 1,0125 0,6675
Скорректированный индекс сезонных колебаний 0,97 1,37 1,00 0,66

Средний индекс сезонных колебаний рассчитываем путем деления суммы индексов за данный квартал на количество данных: для 1 квартала: 3,90:4 = 0,975 и т.д.

Полученные средние индексы сезонных колебаний проверяют на точность расчета. Среднее значение всех квартальных индексов не должна превышать 1. В нашем случае:

(0.975 + 1,375 + 1,0125 + 0,6675): 4 = 1,0075

Так как индекс больше 1, его следует скорректировать, уменьшив на 0.0075.

Завершающая стадия – составление прогноза. Для этого берут центрированную скользящую среднюю за определенный период и умножают на скорректированный индекс сезонных колебаний. Для 2000 года мы должны взять центрированную скользящую среднюю за 1 квартал 1999 года (316) и умножить на скорректированный индекс сезонных колебаний за 1 квартал (0,97):

1 квартал 2000 года = 316*0,97 = 307.

ЭКСПОНЕНЦИАЛЬНОЕ СГЛАЖИВАНИЕ. При экспоненциальном сглаживании в равенство вводится постоянный коэффициент сглаживания , придающий больший вес последним данным. Уравнение прогноза, учитывающее экспоненциальное сглаживание, записывается в виде:

где Fn – прогноз предстоящего периода

Yn-1— фактический объем прогнозируемого показателя в текущем году.

Коэффициент находится в интервале от 0 до 1.Чувствительность к происходящим изменениям повышается с увеличением коэффициента сглаживания и уменьшением числа рассматриваемых периодов (N). Связь между и N описывается отношением = .

Поэтому, если нас не устраивает найденное количество периодов N, то мы легко можем найти значение , которое нас устроит.

Дата добавления: 2017-08-01 ; просмотров: 11976 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Сущность методов экстраполяции

date image2015-10-13
views image18763

facebook icon vkontakte icon twitter icon odnoklasniki icon

Экстраполяция — это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. Методы экстраполяции наиболее распространенные в группе формализованных. Цель методов экстраполяции – показать, к какому состоянию в будущем может прийти объект, если его развитие будет осуществляться с той же скоростью или ускорением, что и в прошлом.

Методы экстраполяции достаточно широко применяются на практике, так как они просты, дешевы, и не требуют для расчетов большой статистической базы. Использование методов экстраполяции предполагает два допущения: а) основные факторы, тенденции прошлого сохранят свое проявление в будущем; б) исследуемое явление развивается по плавной траектории, которую можно выразить, описать математически. Названные допущения в большинстве случаев характерны для экономических процессов.

Как поступить, если условия формирования тренда (тренд – тенденция, определяющая общее направление развития) изменились? В этом случае предполагается использование такого искусственного приема, как исправление тренда. Отсекаются показатели ряда, которые были сформированы отжившими факторами, но при разделении старых и новых тенденций следует быть осторожным (можно воспользоваться экспертными оценками).

Прогноз должен иметь высокую точность, ошибка прогноза будет тем меньше, чем меньше период (срок) упреждения и чем больше база прогноза.

Период (срок) упреждения — это интервал времени, на который разрабатывается прогноз. База прогноза — это статистическая информация за ряд лет, на которую мы опираемся при построении расчетов. Срок упреждения должен составлять не менее 1/3 базы прогноза.

Построенные с помощью методов экстраполяции прогнозы нельзя рассматривать как конечный этап прогнозирования, ибо полученный показатель следует оценить с помощью экспертов и в случае необходимости скорректировать, если экономические, политические и другие условия в стране (городе) меняются.

Процедура экстраполяции — это чисто механический прием, следовательно, большое значение здесь имеет расчет доверительного интервала, т.е. диапазона отклонения полученной прогнозной оценки. Доверительный интервал рассчитывается двумя способами: формальным и неформальным. Формальный основан на применении специальных математических формул, а неформальный – на использовании экспертных оценок, заключений.

Метод скользящей средней дает возможность выравнивать динамический ряд на основе его средних характеристик. При экстраполяции с помощью среднего уровня ряда используется принцип, при котором прогнозируемый уровень принимается равным среднему значению уровней ряда в прошлом.

Данный метод дает прогнозную точечную оценку и более эффективно используется при краткосрочном прогнозировании. Преимущество данного метода состоит в том, что он прост в применении и не требует обширной информационной базы.

Метод экспоненциального сглаживания дает возможность выявить тенденцию, сложившуюся к моменту последнего наблюдения, и позволяет оценить параметры модели, описывающей тренд, который сформировался в конце базисного периода. Этот метод адаптируется к меняющимся во времени условиям, а не просто экстраполирует действующие зависимости в будущее.

Метод экспоненциального сглаживания наиболее эффективен при разработке кратко- и среднесрочных прогнозов. Его основные достоинства заключаются в простоте вычисления и учете весов исходной информации, т. е. новые данные или данные за последние периоды имеют больший вес, чем данные более отдаленных периодов.

При использовании для прогнозирования данного метода возникают следующие затруднения: а) выбор значения параметра сглаживания; б) определение начального значения экспоненциально взвешенной средней.

Метод наименьших квадратов основан на выявлении параметров модели, которые минимизируют суммы квадратических отклонений между наблюдаемыми величинами и расчетными. Модель, описывающая тренд, в каждом конкретном случае подбирается в соответствии с рядом статистических критериев. На практике наибольшее распространение получили такие функции, как линейная, квадратическая, экспоненциальная, степенная, показательная.

Преимущества метода наименьших квадратов заключаются в том, что он прост в применении и реализуется на ЭВМ. К недостаткам метода можно отнести жесткую фиксацию тренда моделью, небольшой период упреждения, сложность подбора уравнения регрессии, который осуществляется с помощью использования типовых компьютерных программ, например Excel.

Контрольные вопросы:

1. Какие методы относится к методам экстраполяции?

2. Дайте определение следующим понятиям: «экстраполяция», «тренд», «период упреждения», «база прогноза», «доверительный интервал прогноза».

3. Раскройте сущность метода скользящей средней

4. Выделите достоинства и недостатки метода экспоненциального сглаживания

5. Что лежит в основе метода наименьших квадратов?

6. В чем заключаются достоинства методов экстраполяции?

7. Какое допущение предполагают методы экстраполяции?

Источник

Сущность и методы экстраполяции

Сложное слово «экстраполяция» составлено из двух простых. Первое на латыни звучит extra и означает «вне», «за», «снаружи». Второе на той же латыни звучит polire и означает «изменять», «выправлять», «приглаживать». В целом экстраполяция может быть определена как значение вне двух заданных точек. Она считается оценкой того, что извлечено из известных фактов, которые расширяют данные в неизвестной области, чтобы прийти к предполагаемому результату. Эта концепция также может быть отнесена к предсказанию образа будущего, предполагающего истинность настоящих и прошлых тенденций.

Метод экстраполяции предполагает, что данные или наблюдения в будущем будут по-прежнему похожи. Таким образом, будущие результаты могут быть предсказаны. Ее можно рассматривать как математическую гипотезу. При экстраполяции используются данные и факты определенной ситуации и приводятся прогнозы о том, что может произойти в конечном итоге.

История процесса экстраполяции

Метод экстраполяции используется

Этот метод часто называют экстраполяцией Ричардсона или методом Ромберга. Но это не совсем правильно, поскольку на протяжении веков уже существовали похожие численные методы решения подобных задач. Поэтому знаменитая h2 Ричардсона (экстраполяция для численного решения) не является первой. Подобный метод был применим в вычислениях Гюйгенса еще в 1654 году. Сам термин «экстраполяция» был впервые введен Томасом Д. Кларесоном в 1959 году в книге о науке и художественной литературе.

Методы экстраполяции могут пониматься как расширение данных или процессов, предполагающих, что аналогичный процесс будет применяться и за их пределами. Экстраполяция — важная концепция, используемая не только в математике, но и в других областях, таких как социология, психология, прогнозирование. Например, водитель обычно экстраполирует дорожные условия за пределами своего видения. Экстраполяция может быть отнесена к способу, в котором значения данных рассматриваются как точки x1, x2 . xn, а затем значение приближается к пределу заданного диапазона точек.

  1. Простой метод прогнозирования.
  2. Не так много данных требуется.
  3. Быстрая и дешевая аналитика.

Метод существует в статистических данных. Если какие-то значения периодически убираются, ответ приближается к следующей точке данных. Примером методом экстраполяции является прогноз погоды, в котором рассматривается предыстория данных и экстраполируется прогнозируемая модель будущего. Еще более простой пример, если есть информация о воскресеньях, понедельниках и вторниках, можно экстраполировать среду или четверг.

Недостатки использования экстраполяции:

  1. Ненадежность, если имеются значительные колебания в исторических данных.
  2. Предположение, что прошлая тенденция будет продолжаться и в будущем, вряд ли возможно во многих конкурентных бизнес-средах.
  3. Игнорирует качественные факторы, например изменения вкусов и моды.
Читайте также:  Игра тест драйв анлимитед 2 автосалоны

Ускорение последовательности

Методы экстраполяции заключается в создании касательной линии в конце известных данных и расширении ее за пределы этой области. Подобно интерполяции, экстраполяция использует множество методов, требующих предварительного знания процесса, который создает существующие точки данных. Метод включает в себя экстраполяцию линейную и полиномиальную, экстраполяцию коники и французской кривой.

Метод экстраполяции тенденций

Как правило, качество конкретного метода ограничено предположениями о функции. В численном анализе экстраполяция Ричардсона представляет собой метод ускорения последовательности, используемый для улучшения скорости ее сходимости. Он назван в честь Льюиса Фрая Ричардсона. Он представил технику расчета в начале XX века, полезность которой для практических вычислений вряд ли можно переоценить.

Практические применения экстраполяции Ричардсона включают интеграцию Ромберга, которая применяет ее к правилу трапеции и алгоритму Булирша — Стоера для решения обыкновенных дифференциальных уравнений.

Линейный метод

Метод линейной экстраполяции полезен, когда задана линейная функция. Это делается путем рисования касательной линии в конечной точке заданного графика и расширения ее за пределы. Этот метод экстраполяции в прогнозировании дает хорошие результаты, когда точка, которая должна быть предсказана, не слишком далека от данных. Линейная интерполяция полезна при поиске значения между заданными точками. Его можно рассматривать как «заполнение пробелов» таблицы данных.

Метод экстраполяции в прогнозировании

Стратегия линейной интерполяции заключается в использовании прямой линии для соединения известных точек значений по обе стороны от неизвестной. Линейная интерполяция неточна для нелинейных параметров. Если точки в наборе данных меняются на большую величину, линейная интерполяция может дать неправильную оценку.

Линейная экстраполяция может помочь оценить значения, которые выше или ниже значений в наборе данных. Стратегия ее заключается в использовании подмножества данных вместо всего набора. Для этого типа значений полезно применять в прогнозировании метод экстраполяции, используя последние две или три точки, чтобы оценить значение, превышающее диапазон данных.

Полиномиальная и коническая экстраполяции

Известно, что три точки дают уникальный многочлен. Полиномиальная кривая может быть продолжена после окончания таких данных. Она обычно выполняется методом Ньютона с конечной разностью или с использованием интерполяционной формулы Лагранжа. Полином высшего порядка должен быть экстраполирован с должным вниманием, потому что при полиномиальной экстраполяции есть справедливые шансы на ошибку. Если это произойдет, оценка ошибки будет экспоненциально возрастать вместе со степенью полинома.

В математике минимальная полиномиальная экстраполяция представляет собой преобразование последовательности, используемое для ускорения сходимости. Хотя метод Айткена является самым известным, он часто терпит неудачу, особенно для векторных последовательностей. При этом выполняется итерация, которая строит матрицу. Ее столбцы являются отличиями.

Метод экстраполяции предполагает

К примеру, методом экстраполяции для конического разреза может быть произведен с помощью 5 точек, указанных ближе к концу данных. В случае, если коническая секция представляет собой круг или эллипс, то она будет образовывать петли назад и воссоединиться с собой. Парабола или гипербола никогда не пересекутся. Но они могут быть изогнуты назад относительно оси X. Экстраполяция конуса может быть выполнена на бумаге с конической секцией или с помощью компьютера.

Математический метод оценки

В этом методе экстраполяции прогнозируется значение за базовый период. Действия, описанные ниже, автоматически выполняются системой и не видны пользователю. Описание предназначено для уточнения алгоритма, который выводит ожидаемые значения из количества, хранящегося в системе, и прогнозирует результат измерения счетчика.

Метод математической экстраполяции

Экстраполяция при использовании определения количества процедуры выполняется с помощью функции: Yt = f (yi, t, aj).

В качестве основы для экстраполяции добавляются округленные данные типичного базового периода, хранящегося в результатах считывания. Система определяет вес Yt данных временного ряда в t (время прогнозируемого периода) для получения правильного решения методом экстраполяции. Где в точке отсчета взяты yi – уровень ряда и aj – параметр уравнения тренда.

Прогнозирование функциональных возможностей

Метод фиксации статистической кривой применим к прогнозированию функциональных возможностей. Статистические процедуры соответствуют прошлым данным одной или нескольких математических функций, таких как линейные, логарифмические, Фурье или экспоненциальные. Наилучшие выбираются статистическим тестом. Тогда этот прогноз экстраполируется из этой математической связи методом математической экстраполяции. Одним из самых простых способов получения приблизительных оценок будущих (или прошлых) условий является экстраполяция данных, которые изменяются со временем.

Например, если нужно провести грубую оценку будущих уровней загрязняющих веществ в питьевых водах на 20 лет вперед, можно экстраполировать эту тенденцию с последних 20 лет. То же наблюдается, если нужно оценить распространенность курения или рак легких в фоновом режиме в будущем. Прогноз можно составить путем расчета тенденции за последние годы. Экстраполяции этого типа можно сделать с использованием менее сложных методов. Во многих случаях (особенно в областях маркетинга и управления бизнесом) традиционно используется метод экстраполяции, например путем просмотра последних данных и интуитивной оценки того, что подразумевается в будущем.

Методы, основанные на правилах, также могут быть использованы путем применения набора предопределенных принципов или ожиданий на основе предварительного понимания системы и учета последних данных для интерпретации будущих событий.

При любом методе в экстраполяции важна осторожность из-за наличия многочисленных неопределенностей. Любая процедура экстраполяции основана на предположении, что в прошлых данных и знаниях имеется достоверная информация. Следовательно, будущее обусловлено теми же факторами, которые действовали ранее.

Ошибки прогнозирования

Ошибочность экстраполяции (точнее, ошибочность неоправданной экстраполяции) возникает, когда явление, ответственное за ряд тривиальных локальных эффектов, считывается в качестве великих глобальных явлений. Еще одна причина ошибки заключается в том, что иногда обобщенные правила выводятся на основе слишком немногочисленных фактов. Так, теория Дарвина об эволюции является фантастическим примером применения метода экстраполяции, в которой механизмы случайных изменений и естественного отбора объявляются для учета развития таких сложных структур, как зрение млекопитающих или иммунная система живых организмов.

При попытке интерпретации результатов исследований ученый должен избегать экстраполяции вне диапазона данных и осознавать лежащие в основе предположения, чтобы избежать принятия недействительных выводов. В общем, экстраполяция является законным научным инструментом. Есть два аспекта, которые помогают различать действительную и ошибочную экстраполяцию. Вероятность ошибочной экстраполяции выше, когда для ее построения были получены точки на недостаточных данных.

Статистические инструменты Excel

Чтобы найти корреляцию между годами и результатами (например, в бизнесе), можно воспользоваться Excel.

Применение метода экстраполяции

Для этих задач используют статистические инструменты для моделирования методом экстраполяции, встроенные во все версии Excel, начиная с 97. Порядок действия:

  1. Ввести известные значения, например общие продажи за 2016-2017 годы, если нужно определить их за 2018 и 2020 годы.
  2. Установить утилиту Analysis, функцию, требующую использования надстройки.
  3. Чтобы установить ее, извлечь из меню «Инструменты», «Дополнения».
  4. Проверить окно утилиты анализа и подтвердить с помощью «ОК».
  5. Измерить корреляции между двумя сериями.
  6. Экстраполяция, которую нужно сделать, имеет смысл только в том случае, если между двумя наборами чисел (годы и продажи) складывается четкая тенденция (корреляция) по методу экстраполяции тенденций.
  7. Чтобы измерить эту корреляцию, используют меню «Инструменты», «Утилиты анализа».
  8. В списке «Инструменты анализа» выбирают «Анализ корреляции» и нажимают «ОК».
  9. В поле Input Range вводят анализируемый диапазон, например A6: B18, Excel добавит символ «$».
  10. В области «Параметры вывода» проверяют выходной диапазон и вводят в соседнее поле.
  11. Подтверждают с помощью OK.
  12. Excel создает массив из двух строк по двум столбцам. Находят расчетное значение (например, 0.981). Поскольку это значение близко к 1, это означает, что существует сильная корреляция между годами и цифрами продаж. Если пользователь получит значение, близкое к нулю, это будет означать, что тенденция не возникает. В этом случае экстраполяция не имеет смысла.
  13. Запускается оценка будущих значений.
  14. Выбирают необходимый диапазон и нажимают кнопку «Мастер диаграмм».
  15. Выбирают диаграмму (например, облака точек) и нажимают «Готово».

Применение скользящих средних

Эти два метода экстраполяции предполагают широкое использование данных по продажам для прогнозирования будущего. Скользящее среднее значение принимает серию данных и «сглаживает» флуктуации в них. Цель состоит в том, чтобы извлекать экстремумы данных из периода в период. Скользящие средние часто вычисляются ежеквартально или еженедельно. Для прогнозирования будущих значений экстраполяция предполагает использование трендов, установленных историческими данными. Основное предположение экстраполяции заключается в том, что образец будет продолжаться и в будущем, если фактические данные не указывают на иное. Чтобы подробнее разобраться в этих методах, можно рассмотреть диаграмму, показывающую продажи гаджетов для крупного бизнеса с 2012 по 2015 годы.

Метод экстраполяции трендов

Этот метод экстраполяции расчета показывает фактическую цифру продаж. Как можно увидеть, общая сумма продаж колеблется от года к году, хотя можно догадаться (глядя на данные), что общая тенденция для роста продаж имеется. Черная линия показывает скользящую среднюю. Это рассчитывается путем добавления последних лет продаж (например, Q1 + Q2 + Q3 + Q4), а затем деления на четыре.

Этот метод сглаживает годовые изменения и дает хорошее представление об общей тенденции в годовых продажах. Скользящее среднее помогает указать тенденцию роста, выраженную в процентных значениях. Именно это экстраполяция будет использовать сначала, чтобы предсказать путь будущих продаж. Это можно сделать математически, используя электронную таблицу. В качестве альтернативы экстраполированный тренд можно просто нарисовать на диаграмме в качестве приблизительной оценки.

Корреляция трендов

Всегда одна технология является предшественником другой. Это случается, когда достижения, достигнутые в технологии прекурсоров, могут быть приняты технологией последователей. Когда такие отношения существуют, знание изменений в технологии предшественников может быть использовано для прогнозирования хода технологии последователей в будущем. Кроме того, экстраполяция предшественника позволяет прогнозировать продолжение следования за пределами времени запаздывания.

В этом случае используют метод экстраполяции трендов, в котором сравниваются, например, тенденции скорости боевых и транспортных самолетов. Другим примером прогноза корреляции трендов является прогнозирование размера и мощности будущих компьютеров, основанное на достижениях в области микроэлектронной технологии. Иногда технология последователей зависит от нескольких технологий прекурсоров, а не от одного предшественника.

Фиксированные комбинации предшественников могут влиять на изменение в последовательности, но чаще комбинации не фиксируются, а входы предшественников различаются как по комбинации, так и по силе. Например, увеличение скорости воздушных судов может происходить за счет улучшения двигателей, материалов, элементов управления, топлива, аэродинамики и различных комбинаций этих факторов.

Пример прогноза корреляции, полученной методом экстраполяции трендов: общие пассажирские мили, общие географические мили и средняя посадочная мощность. Экстраполяция статистически определенных тенденций позволяет объективно подходить к прогнозированию. Однако этот подход имеет серьезные ограничения и ловушки. Любые ошибки или неправильный выбор, сделанный при определении исторических данных, будут отражены в прогнозе, что снижает его ценность.

Приложения, атрибуты и лимиты

Метод экстраполяции относится к сфере прогнозирования. Он предполагает, что шаблоны, которые существовали в прошлом, будут продолжаться и в будущем, а также то, что эти шаблоны являются регулярными и могут быть измерены. Другими словами, прошлое является хорошим индикатором будущего. Приложения полезны для разработки базовых данных.

Атрибуты и лимиты — это простые и дешевые инструменты вычислений, как и сложные теоретические модели.

  1. Данные процесса — графика и наблюдения.
  2. Ключ — наличие хорошей базы данных и понимание структуры внутри нее.
  3. Техника — наилучшая подгонка, соотношение и так далее.
Читайте также:  Онтологические проблемы философии тест

Временные стандартные статистические процедуры не приводят к аккуратным подборам тенденций, которые прогнозист может экстраполировать с комфортом, выполняя прогноз методом экстраполяции. В таких случаях прогнозист может «скорректировать» статистические результаты, применяя суждение. Также он может полностью игнорировать статистику и экстраполировать тренд целиком на основе суждения.

Прогнозы, генерируемые таким образом, менее точны, чем статистические, но не обязательно неудовлетворительные. Одним из примеров такой экстраполяции качественного тренда является прогнозирование сложности воздушного судна. Попытки количественной оценки этой тенденции не были успешными. Но процент подвижных или регулируемых частей самолета был экстраполирован с частотой, с которой такие элементы были введены в прошлом. Эти прогнозы были достаточно точными.

Специфические технические изменения не могут быть предсказаны таким образом, но степень изменения может. Это дает полезные материалы для планирования, указывая тенденцию прошлого поведения.

Источник

Различают перспективную и ретроспективную экстраполяцию.

Методы интерполяции и экстраполяции.

Сущность метода интерполяции заключается в нахождении прогнозных значений функций объекта yi=f(xj), где j=0,…n, в некоторых точках внутри отрезка х0,…хn по известным значениям параметров в точках х0

1. Формулирование задачи, выдвижение гипотез о возможном развитии прогнозируемого объекта, обсуждение факторов, стимулирующих или препятствующих развитию объекта, определение экстраполяции и ее допустимой дальности.

2. Выбор системы параметров, унификация различных единиц измерения, относящихся к каждому параметру в отдельности.

3. Сбор и систематизация данных, проверка однородности данных и их сопоставимости.

4. Выявление тенденций изменения изучаемых величин статистического анализа и непосредственной экстраполяции данных.

В экстраполяционных прогнозах предсказание конкретных значений изучаемого объекта или параметра не является основным результатом. Более важным является своевременное выявление объективно намечающихся сдвигов, закономерных тенденций развития явления или процесса.Под тенденцией развития понимают некоторое его общее направление, долговременную эволюцию. Обычно тенденцию стремятся представить в виде более или менее гладкой траектории.

Для повышения точности экстраполяции тренд экстраполируемого явления корректируется с учетом опыта функционирования объекта — аналога исследований или объекта, опережающего в своем развитии прогнозируемый объект. В зависимости от того, какие принципы и какие исходные данные положены в основу прогноза, существуют следующие методы экстраполяции: среднего абсолютного прироста, среднего темпа роста и экстраполяция на основе выравнивания рядов по какой-либо аналитической формуле.

Прогнозирование по среднему абсолютному приросту может быть выполнено в том случае, если есть уверенность считать общую тенденцию линейной, т.е. метод основан на предположении о равномерном изменении уровня (под равномерностью понимается стабильность абсолютных приростов).

Для нахождения аналитического выражения тенденции на любую дату определяется средний абсолютный прирост и последовательно прибавляется к последнему уровню ряда столько раз, на сколько периодов экстраполируется ряд.

Аналитическое выражение этого метода выглядит следующим образом:

где ?уi+t — экстраполируемый уровень, (i+t) – номер этого уровня (года);i — номер последнего уровня (года) исследуемого периода, за который рассчитан t— срок прогноза (период упреждения); D— средний абсолютный прирост.

Прогнозирование по среднему темпу роста можно осуществлять в случае, когда есть основание считать, что общая тенденция ряда характеризуется показательной (экспоненциальной) кривой. Для нахождения тенденции в этом случае необходимо определить средний коэффициент роста, возведенный в степень, соответствующую периоду экстраполяции, т.е. по формуле:

где yi– последний уровень ряда динамики;t – срок прогноза; — средний коэффициент роста.

Если же ряду динамики свойственна иная закономерность, то данные, полученные при экстраполяции на основе среднего темпа роста, будут отличаться от данных, полученных другими способами экстраполяции.

Рассмотренные способы экстраполяции тренда, будучи простейшими, в то же время являются и самыми приближенными. Поэтому наиболее распространенным методом прогнозирования является аналитическое выражение тренда.

Тренд экстраполируемого явления -это длительная тенденция изменения экономических показателей, т.е. изменение, определяющее общее направление развития, основную тенденцию временных рядов. Тренд характеризует основные закономерности движения во времени, в некоторой мере свободные от случайных воздействий. При разработке моделей прогнозирования тренд оказывается основной составляющей прогнозируемого временного ряда, на которую накладываются другие составляющие. Результат при этом связывается исключительно с ходом времени. Предполагается, что через время можно выразить влияние всех основных факторов.

Разработка прогноза заключается в определении вида экстраполирующей функции на основе исходных эмпирических данных и параметров. Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Следующим этапом является расчет параметров выбранной экстраполяционной функции.

При оценке параметров зависимостей наиболее распространенными являются метод наименьших квадратов, метод экспоненциального сглаживания временных рядов, метод скользящей средней и другие.

Сущность метода наименьших квадратов состоит в том, что функция, описывающая прогнозируемое явление, аппроксимируется более простой функцией или их комбинацией. Причем последняя подбирается с таким расчетом, чтобы среднеквадратичное отклонение фактических уровней функции в наблюдаемых точках от выровненных было наименьшим.

Например, по имеющимся данным (xiyi) (i=1,2,….n) строится такая кривая y=a+bx, на которой достигается минимум суммы квадратов отклонений

т.е. минимизируется функция, зависящая от двух параметров: а– (отрезок на оси ординат) и b(наклон прямой).

Уравнение, дающие необходимые условия минимизации функции S(a,b), называются нормальными уравнениями. В качестве аппроксимирующих функций применяются не только линейная, но и квадратическая, параболическая, экспоненциальная и др.

Метод наименьших квадратов широко применяется в прогнозировании в силу его простоты и возможности реализации на ЭВМ. Недостаток данного метода состоит в том, что модель тренда жестко фиксируется, а это делает возможным его применение только при небольших периодах упреждения, т.е. при краткосрочном прогнозировании.

Метод экспоненциального сглаживания временных рядов – этот метод является модификацией метода наименьших квадратов для анализа временных рядов, при которой более поздним наблюдениям придается больший вес, т.е. веса точек ряда убывают экспоненциально по мере удаления в прошлое. Этот метод позволяет оценить параметры модели, описывающей тенденцию, которая сформировалась в конце базисного периода и не просто экстраполирует действующие зависимости в будущее, а приспосабливает, адаптирует к изменяющимся во времени условиям. Метод экспоненциального сглаживания применяется при кратко- и среднесрочном прогнозировании. Его преимущества состоят в том, что он не требует обширной информационной базы.

Модели, описывающие динамику показателя, имеют достаточно простую математическую формулировку, а адаптивная эволюция параметров позволяет отразить неоднородность и текучесть свойств временного ряда.

Метод скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго, далее — начиная с третьего и т.д. Таким образом, при расчетах среднего уровня как бы «скользят» по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень вначале и добавляя один следующий.

Каждое звено скользящей средней – это средний уровень за соответствующий период, который относится к середине выбранного периода, если число уровней ряда динамики нечетное. Недостаток метода простой скользящей средней состоит в том, что сглаженный ряд динамики сокращается ввиду невозможности получить сглаженные уровни для начала и конца ряда. Этот недостаток устраняется применением метода аналитического выравнивания для анализа основной тенденции.

Метод аналитического выравнивания предполагает представление уровней данного ряда динамики в виде функции времени y=f(t).

Для отображения основной тенденции развития явлений во времени применяются различные функции: полиномы степени, экспоненты, логистические кривые и другие виды.

Методы экстраполяции, основанные на продлении тенденций прошлого и настоящего на будущий период, могут использоваться в прогнозировании лишь при периоде упреждения до пяти — семи лет. Важнейшим условием применения является наличие устойчиво выраженных тенденций развития социально-экономического явления или процесса. При более длительных сроках прогноза эти методы не дают точных результатов.

Метод математического моделирования основан на возможности установления определенного соответствия между знанием об объекте познания и самим объектом. Человеческие знания об объекте представляют собой более или менее адекватное его отображение, а материализованная форма знания является моделью объекта. Таким образом, методом моделирования называется способ исследования, при котором изучаются не сами объекты, а их модели и результаты такого исследования переносятся с модели на объект.

Применение математических методов обеспечивает высокую степень обоснованности, действенности и своевременности прогнозов. В прогностике используют различные виды моделей: оптимизационные, статические, динамические, факторные, структурные, комбинированные и др. В зависимости от уровня агрегирования один и тот же тип моделей может быть применен к различным экономическим объектам, т.е. макроэкономические, межотраслевые, межрегиональные, отраслевые, региональные и др. модели.

Моделирование является — один из важнейших и эффективнейших средств прогнозирования социально-экономических явлений, инструментом научного познания исследуемого процесса. Поэтому вопрос об адекватности модели объекту (т.е. о качестве отображения) необходимо решать исходя из определенной цели прогноза.

Содержанием процесса моделирования являются: конструирование модели на основе предварительного изучения объекта или процесса, выделение его существенных характеристик; теоретический и экспериментальный анализ модели; сопоставление результатов моделирования с фактическими данными об объекте или процессе; корректировка и уточнение модели.

В процессе экспериментирования могут быть установлены такие связи, отношения или свойства элементов модели, которым не соответствует ни одна связь, отношение или свойство элементов объекта. В этом случае либо построенная модель не адекватна сущности изучаемого явления, либо построенная модель адекватна сущности изучаемого явления, однако свойства и отношения элементов прогнозируемого явления описаны не полно.

В прогнозировании социально-экономических процессов средством изучения закономерностей развития социально-экономических процессов является экономико-математическая модель (ЭММ), т.е. формализованная система, описывающая основные взаимосвязи ее элементов.

Экономико-математическая модель (ЭММ) представляет собой математическое описание экономического процесса или объекта, произведенное в целях исследования и управления. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте. ЭММ является основным средством модельного исследования экономики.

Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Примером экономико-математическая модель является формула, по которой определяется потребность в материалах, исходя из норм расхода.

Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны.

Модели, в которых описывается моментное состояние экономики, называются статическими, а модели описывающие развитие объекта моделирования, — динамическими. Модели могут строиться в виде формул — аналитическое представление модели; в виде числовых примеров — численное представление; в форме таблиц — матричное представление; в форме графов — сетевое представление модели.

Источник