Капсулами наполненными микрокапсулами микрогранулами или микродраже являются тест

Микрокапсулы, микрогранулы и микродраже, их характеристика. Микрокапсулирование фармацевтических субстанций.

Микрокапсулирование — процесс заключения в оболочку микроскопических твердых, жидких или газообразных веществ в оболочку (индивидуальную упаковку), изолирующую их от внешней среды.

Микрокапсулы имеют размеры чаще всего от 1 до 500 мкм.

Технология образования оболочек в последнее время достигла столь высокого совершенствования, что позволяет наносить покрытия на частицы размером менее 1 мкм.

Такие частицы с оболочкой называют нанокапсулами, а процесс ее образования — нанокапсулированием.

Форма микрокапсул определяется

агрегатным состоянием их содержимого

Жидкие и газообразные вещества придают микрокапсулам шарообразную форму, твердые — овальную или неправильную геометрическую форму.

В настоящее время в виде микрокапсул выпускают ряд лекарственных средств: витамины, антибиотики, противовоспалительные, мочегонные, сердечно-сосудистые, снотворные и другие средства.

Основные цели процесса микрокапсулирования:

Предохранение неустойчивых лекарственных препаратов от воздействия внешней среды (витамины, ферменты, гормоны).

Маскировка вкуса и запаха лекарственных веществ.

Высвобождение лекарственных веществ в нужном участке ЖКТ (кишечно-растворимые микрокапсулы).

Уменьшение раздражающего и в ряде случаев — токсического действия.

Пролонгирование действия. За счет замедления скорости высвобождение лекарственного вещества из микрокапсул благодаря наличию полупроницаемой оболочки.

Превращение жидкостей и газов в псевдотвердое состояние, т. е. в сыпучую массу, состоящую из микрокапсул с твердой оболочкой, заполненных жидкими или газообразными лекарственными веществами.

Уменьшение летучести испаряющихся лекарственных средств (например, нитроглицерин), вследствие их защиты непроницаемой для образующихся паров и газов оболочкой.

Т.о. микрокапсулирование позволяет получить ЛС с направленным действием и регулируемой скоростью их высвобождения, что достигается нанесением оболочки или другим способом.

Микрокапсулы используются в виде спансул, медул, таблеток типа лонтаб, брикетов, таблеток ретард и ректальных капсул.

Главное-обеспечение с помощью оболочек необходимой скорости высвобождения лекарственных веществ, обеспечение пролонгированности действия.

Возможности применения в медицине. Микрокапсулирование ферментов и возможность инъекционного введения; не образуются антитела, нет инактивации. Очистка крови от токсических веществ; пропускают через колонку с микрокапсулами, внутри которых имеется активированный уголь или ионообменные смолы.

С целью пролонгирования таблетки можно получать из покрытых пленкой гранул. Такие гранулы называются микродраже.

Одним из способов получения микродраже является нанесение лекарственного вещества (рис. 154,6) вместе со склеивающим веществом (сахарный сироп) на мелкие зернышки (а) сахара в дражировочных котлах, подобно тому как это делается с обычными драже. Полученное микродраже (1) покрывают затем оболочками, затрудняющими растворение лекарственного вещества (микродраже 2 и 3).

Если затем полученные микродраже, непокрытые и покрытые с разным временем освобождения лекарственного вещества смешать в соответствующем соотношении и этой смесью (от 50 до 400 микродраже) заполнить твердые желатиновые капсулы, получится лекарственная форма, называемая спансулой.

Эффект продления действия микродраже в форме спансул хорошо представлен на рис. 155. Смешивать можно 3-4 и более типов микродраже с разным временем освобождения лекарственного вещества. Для визуального контроля состава спансулы каждый тип микродраже окрашивают в разный цвет. В спансулах чаще назначаются гипотензивные и седативные лекарственные средства, нитроглицерин, снотворные, симпатикотропные вещества и некоторые другие. Микродраже можно принимать не только в виде спансул, но и в состоянии взвеси в жидкости. Это особенно удобно, если назначаются большие дозы лекарственных веществ.

Для покрытия микродраже применяют разного состава липидные пленки. Скорость диффузии лекарственного вещества через эти пленки зависит от химической природы жирного вещества и толщины лленки.

Удобным способом получения микродраже является суспендирование порошкообразного лекарственного вещества в расплавленной смеси покрывающих веществ — воска, цетилового спирта, стеариновой кислоты и т. п. Эта взвесь получается методом распиливания. После охлаждения получаются микродраже диаметром 30-50 мкм. В зависимости от соотношения лекарственного и покрывающих веществ получают микродраже с различным временем освобождения лекарства. На скорость освобождения можно влиять, добавляя эмульгаторы (лецитин, твин).

Источник

Микрокапсулы

Микрокапсулирование — это процесс заключения в оболочку микроскопических частиц твердых, жидких или газообразных лекарственных веществ. Размер заключенных в микрокапсулу частиц может колебаться в широких пределах: от 1 до 6500 мкм, т. е. до размера мелких гранул или капсул (6,5 мм). Наиболее широкое применение в медицине нашли микрокапсулы размером от 100 до 500 мкм. Современная технология дает возможность наносить покрытия на частицы размером менее 1 мкм. Такие частицы с оболочками называют нанокапсулами, а процесс их производства — нанокапсулированием.

Капсулы с жидким и газообразным веществом имеют шарообразную форму, с твердыми частичками — обычно неправильную, поскольку пленка тонкая и фиксирует все неровности частичек. Содержание лекарственных веществ может варьировать в пределах от 15 до 99% массы микрокапсул.

В фармацевтической технологии микрокапсулирование стало применяться с конца 50-х — начала 60-х годов текущего столетия, в химической, полиграфической, косметической и других областях промышленности- несколько раньше.

а) предохранение неустойчивых лекарственных препаратов от воздействия внешней среды (витамины, антибиотики, ферменты, вакцины, сыворотки и др.);

б) маскировка вкуса горьких и тошнотворных лекарств;

в) высвобождение лекарственных веществ в нужном участке желудочно-кишечного тракта (кишечно-растворимые микрокапсулы);

г) пролонгирование действия. Смесь микрокапсул, отличающихся размером, толщиной и природой оболочки, помещенная в оперкулиро-ванную капсулу в сочетании с гранулированным или порошкообразным, веществом, обеспечивает поддержание определенного уровня лекарства в организме и эффективное терапевтическое действие в течение длительного времени;

д) совмещение в одном вместилище несовместимых между собой в чистом виде <использование разделительных покрытий);

с) «превращение» жидкостей и газов в псевдотвердое состояние, т. е. в сыпучую массу, состоящую из микрокапсул с твердой оболочкой, заполненных жидкими или газообразными лекарственными веществами.

Технология микрокапсулирования

Существующие методы микрокапсулирования делятся на три основные группы: физические, физико-химические и химические.

Физические методы микрокапсулирования многочисленны. К ним относятся методы дражирования, распыления, напыления в псевдосжи-женном слое, диспергирования в несмешивающихся жидкостях, экструзионные методы, электростатический метод и др. Суть всех этих методов заключается в механическом нанесении оболочки на твердые или жидкие частицы лекарственных веществ.

Использование того или иного метода находится в зависимости от того, является ли «ядро» (содержимое микрокапсулы) твердым или жидким веществом.

Метод дражирования. Применим для микрокапсулирования твердых лекарственных веществ. Последние в виде однородной кристаллической массы (с требуемым размером частиц) во вращающемся дражировочном котле опрыскивается из форсунки раствором пленжообразо-вателя. Образующиеся пленки высыхают в токе нагретого воздуха, подаваемого в котел. Толщина оболочки .микрокапсулы зависит от температуры, концентрации и скорости пульверизации раствора пленко-образователя. Микрокапсулы с твердым ядром, получаемые методом дражирования, называются также микродраже.

Метод распыления. Применяется обычно для микрокапсулирования твердых веществ, которые перед этим должны быть переведены в состояние тонких суспензий. При получении таких микрокапсул, обычно имеющих жировую оболочку, ядра суспендируются в растворе или расплаве жировых веществ (воск, цегиловый спирт, моно- или дисгеа-рат глицерина и др.) с последующим распылением и сушкой суспензии в распылительной сушилке. Получаемые сухие микрокапсулы имеют размер 30-50 мкм.

Методы диспергирования в несмешивающихся жидкостях. Применим для капсулирования жидких веществ. В частности, капельный способ (см. с. 583), применяемый для получения мягких капсул, может быть использован и для микрокапсул. Для этого скорость потока струи воды в наружной трубе должна быть настолько велика (например, 4,73 л/мин) по сравнению со скоростью движения жидкого лекарственного вещества и расплавленного пленкообразователя (например, 30 мл/мин), чтобы поток воды отрывал капельки требуемого размера.

Читайте также:  Тест с фото душевнобольных

Обычно этот способ технологически осуществляется следующим образом. Нагретую эмульсию масляного раствора лекарственного вещества, стабилизированную желатином (эмульсия типа М/В), диспергируют в охлажденном жидком парафине с помощью мешалки. В результате охлаждения мельчайшие капельки покрываются быстро застудневающей желатиновой оболочкой. Застывшие шарики отделяют рт жидкого парафина, промывают органическим растворителем и сушат. Размер микрокапсул, получаемых таким способом, обычно колеблется в пределах 100-150 мкм.

Метод «напыления» в псевдосжиженном слое. Этот метод применяется в аппаратах, принципиальная конструкция которых сходна с СП-30 и СГ-30, применяемых в таблеточном производстве или гранулировании.

Наиболее просто процесс напыления протекает при микрокапсулирования твердых лекарственных веществ. Твердые ядра сжижают потоком воздуха или другого газа и «напыляют» на них раствор (или расплав) пленкообразующего вещества с помощью форсунки. Затвердение жидких оболочек происходит в результате испарения растворителя или охлаждения, или того и другого одновременно,

В случае микрокапсулирования жидких лекарственных веществ последние эмульгируют (если они нерастворимы в воде) или растворяют (если они водорастворимы) при нагревании в водном растворе пленко-образователя (например, желатины). Нагретую эмульсию (раствор) разбрызгивают с ломощъю форсунки в псевдосжиженную систему с гидрофобизированным крахмалом. Капельки, представляющие собой жидкие микрокапсулы, попадая в эту систему, покрываются мельчайшими частицами крахмала, прилипающими к желатиновой оболочке, и быстро высыхают.

Метод микрокапсулирования с помощью центрифугирования. Под воздействием центробежной силы частицы капсулируемых лекарственных веществ (твердых или жидких) проходят через пленку раствора пленкообразователя, покрываются ею, образуя микрокапсулу. Плен-кообразователями применяются вещества, растворы которых обладают достаточным поверхностным натяжением (желатин, натрия аль-гинат, поливиниловый спирт и некоторые др.) и оптимальной вязкостью. От этих параметров будет зависеть размер и форма микрокапсул.

Электростатический метод микрокапсулирования. Один из новых и оригинальных методов, разработанный в США. Предложен ряд приборов. Размер получаемых микрокапсул от 5 до 20 мкм.

Основным физико-химическим методом является микрокапсулирова-ние с использованием явления коацервации.

В настоящее время процесс коацервации высокомолекулярных соединений рассматривается как образование двухфазной системы в результате расслаивания. Одна фаза представляет собой раствор высокомолекулярного вещества в растворителе, вторая-раствор растворителя в высокомолекулярном веществе. Раствор, более богатый высокомолекулярным веществом, часто выделяется в виде капелек коацер-вата. При дальнейшем обезвоживании коацерваты переходят в осадок. Впоследствии оболочки капель подвергают затвердению для повышения механической прочности микрокапсул, которая осуществляется различными способами (охлаждением, испарением растворителя и др.).

Необходимо различать простую и сложную коацервацию. Первая имеет место при взаимодействии раствора одного полимера и лекарственного (низкомолекулярного) вещества. Коацервация при взаимодействии двух полимеров называется сложной или комплексной.

Метод простой коацервации. Процесс образования микро-капсул простой коацервации протекает следующим образом (рис. 206).

Капсулируемое вещество (масло, масляные растворы витаминов, гормонов и других лекарственных препаратов) эмульгируют в раство-

ре желатина при 50°С. Получается эмульсия М/В с возможной степенью дисперсности 2-5 мкм (рис. 206, а).

В раствор пленкообразова-теля (последний в данной системе является внешней средой) при постоянном помешивании добавляют 20% водный раствор натрия сульфата. Дегидратирующие свойства натрия сульфата вызывают коацервацию желатина. Образуется гетерогенная жидкая система с неоднородным распределением в ней растворенного вещества (рис. 206,6), состоящая из двух фаз — обогащенной и обедненной молекулами растворенного вещества (желатин). Например, в 3% растворе желатина образуются две фазы с разным содержанием желатина: в коацерватном слое 2,02%, а в остальной — равновесной жидкости 0,98%.

Микрокапли коацервата с понижением температуры начинают концентрироваться вокруг капель масла, образуя вначале «ожерелье» из микрокапель коацервата (рис. 206, в). Затем микрокапли сливаются, покрывая каплю масла сплошной тонкой, пока жидкой пленкой желатина (рис. 206, г) -образуется микрокапсула.

Для застудневания оболочек микрокапсул смесь быстро выливают в емкость с холодным раствором натрия сульфата <18-20°С).

Отфильтровывают микрокапсулы и промывают водой с целью удаления раствора натрия сульфата. Эта операция может быть проведена на .нутч-фильтрах, рамных фильтрпрессах или с помощью центрифуг. Оболочки микрокапсул содержат 70-80% воды. Сушка микрокапсул может быть тепловая (полочные конвенктивные сушилки, аппараты с виброкипящим слоем) или она может быть осуществлена с помощью адсорбентов (силикагельные сушилки), обработкой водоотни-мающими жидкостями (крепкий этанол) и другими способами.

Методом простой коацервации можно микрокапсулировать также твердые, водонерастворимые лекарственные вещества (сульфаниламиды, антибиотики, люминал и др.).

Метод сложной коацервации. Сложная коацервация сопровождается взаимодействием между положительными и отрицательными зарядами двух полимеров и вызывается обычно изменением рН. Сложные ко-ацерваты могут быть одно-, двух- и трехкомпонентными. В однокомпо-нентных коацерватах оба полимера относятся к одной и той же группе химических соединений и частицы обоих являются амфионами (имеют равное количество положительных и отрицательных зарядов, амфо-терные частицы). В этих системах положительные заряды одного амфиона притягиваются к отрицательным зарядам другого амфиона и наоборот. В двухкомпонентных коацерватах оба полимера являются разными соединениями и несут противоположные заряды: положительные макроионы — макрокатионы или отрицательные — макроанионы.

В этих системах взаимодействие происходит между соединениями мик-рокатион+макроанион. Трехкомпонентные коацерваты образуются при смешении амфиона, макроиона (макрокатиона или макроаниона) и солевых добавок, содержащих микроионы <катионы и анионы).

Разберем на примере коацерватов, состоящих из желатина и гуммиарабика, т. е. на примере двухкомпонентной коацервации, процесс образования микрокапсул с лекарственными веществами методом сложной коацервации.

Приготавливают 10% раствор желатина (рН 8,0). В 11 % растворе гуммиарабика эмульгируют масло или масляный раствор лекарственного вещества. Обе жидкости смешивают мешалкой (температура смеси 50°С во избежание гелеобразования). Добавляют раствор едкого натра до рН смеси 6,5, при котором электрические заряды обоих полимеров становятся противоположными. Смесь разбавляют водой и 10% раствором уксусной кислоты, рН снижают приблизительно до 4,5. При этом значении рН макрокатионы желатина притягиваются к макроанионам гуммиарабика, капли коацервата обволакивают капельки капсулируемого масла и образуют оболочки. Для дубления оболочек микрокапсул добавляют 37% раствор формальдегида. После затвердения оболочек температуру смеси понижают до 10°С, а рН увеличивают до 9,0 для еще большей прочности оболочки. После этого микрокапсулы сушат и подвергают просеву для выделения фракции необходимого размера.

В случае микрокапсулирования водорастворимых лекарственных веществ используют выделение новой фазы в среде органического растворителя, а ,в качестве материала оболочки — эфиры целлюлозы, си-локсанивые полимеры, поливинилхлорид и некоторые другие полимеры.

Разберем в качестве примера микрокапсулирование витаминов С и В. Тонко измельченные препараты диспергируют в растворе пленко-образователя: аскорбиновую кислоту в растворе этилцеллюлозы в ме-тилэтикетоне или ацетилцеллюлозы в ацетоне, тиамина хлорид — в растворе ацетофталата целлюлозы в смеси ацетона и гексана. При медленном добавлении в эти системы высокомолекулярного осадителя (полисилоксановая жидкость) выделяется новая дисперсная фаза, которая в виде микрокапель локализуется вокруг кристалликов аскорбиновой кислоты, сливаясь затем в сплошную оболочку. Последующие операции обычные: отверждение оболочек микрокапсул, отделение микрокапсул от дисперсионной среды, промывка и сушка.

Получение микрокапсул химическим методом основано на реакции полимеризации и поликонденсации на границе раздела фаз вода — масло. Для получения микрокапсул этим методом в масле растворяют лекарственное вещество, мономер (например, метилметакрилат) и катализатор реакции полимеризации (например, перекись бензоила). Полученный раствор нагревают 15-20 мин при температуре 55°С и вливают в водный раствор эмульгатора. Образуется эмульсия типа М/В, которую выдерживают 4 ч для завершения полимеризации. Полученный полиметилметакрилат, нерастворимый в масле, образует вокруг капелек последнего плотную оболочку. Сформировавшиеся микрокапсулы отделяют от среды, промывают и сушат.

Читайте также:  Матадор mp 82 conquerra 2 отзывы тесты

Применение микрокапсул

В настоящее время в виде микрокапсул выпускают ряд лекарственных веществ: витамины, антибиотики, противовоспалительные, мочегонные, сердечно-сосудистые, антиастматические, противокашлевые, снотворные, противотуберкулезные и т. д. Помимо того, микрокапсулы могут быть использованы в виде спансул, а также в форме таблеток, суспензий и в ректальных капсулах. В настоящее время исследуется возможность применения микрокапсул в инъекциях, глазных каплях, имплантационных таблетках. Большой интерес представят пластырные ленты с нанесенным тончайшим слоем микрокапсулированных лекарственных веществ.

Микрокапсули.рование открывает интересные возможности при использовании ряда лекарственных веществ, которые нельзя реализовать в обычных лекарственных формах. Иллюстрацией возможностей кап-сулирования является применение нитроглицерина в микрокапсулах. Обычный нитроглицерин в подъязычных таблетках или в каплях (на кусочке сахара) обладает кратковременным периодом действия. Мик-рокапсулированный нитроглицерин обладает способностью длительно высвобождаться в организме. Особенно эффективно сочетание обычного (быстровсасывающегося) нитроглицерина совместно с микрокапсу-лированным.

Источник

Антимикробные средства. Классификация антимикробных препаратов

По спектру активности антимикробные препараты делятся на: антибактериальные, антигрибковые и антипротозойные. Кроме того, все антимикробные средства делят на препараты узкого и широкого спектра действия.

К препаратам узкого спектра действия преимущественно на грамположительные микроорганизмы относятся, например, природные пенициллины, макролиды, линкомицин, фузидин, оксациллин, ванкомицин, цефалоспорины I поколения. К препаратам узкого спектра действия преимущественно на грамотрицательные палочки относятся полимиксины и монобактамы. К препаратам широкого спектра действия относятся тетрациклины, левомицетин, аминогликозиды, большинство полусинтетических пенициллинов, цефалоспорины начиная со 2 поколения, карбопенемы, фторхинолоны. Узкий спектр имеют антигрибковые препараты нистатин и леворин (только против кандиды), а широкий – клотримазол, миконазол, амфотерицин В.

По типу взаимодействия с микробной клеткой антимикробные препараты делятся на:

· бактерицидные – необратимо нарушают функции микробной клетки либо ее целостность, вызывая немедленную гибель микроорганизма, применяются при тяжелых инфекциях и у ослабленных больных,

· бактериостатические – обратимо блокируют репликацию или деление клетки, применяются при нетяжелых инфекциях у неослабленных больных.

По кислотоустойчивости антимикробные препараты классифицируются на:

· кислотоустойчивые – могут применяться перорально, например, феноксиметилпенициллин,

· кислотонеустойчивые – предназначены только для парентерального применения, например, бензилпенициллин.

В настоящее время используются следующие основные группы антимикробных препаратов для системного применения.

Лактамные антибиотики ( табл. 9.2) из всех антимикробных препаратов наименее токсичны, так как, нарушая синтез клеточной стенки бактерий, не имеют мишени в организме человека. Их применение при наличии чувствительности к ним возбудителей является предпочтительным. Наиболее широкий спектр действия среди лактамных антибиотиков имеют карбапенемы, они используются как препараты резерва – только при инфекциях, резистентных к пенициллинам и цефалоспоринам, а также при госпитальных и полимикробных инфекциях.

¨ Антибиотики других групп

Антибиотики других групп ( табл. 9.3) имеют различные механизмы действия. Бактериостатические препараты нарушают этапы синтеза белка на рибосомах, бактерицидные – нарушают либо целостность цитоплазматической мембраны, либо процесс синтеза ДНК и РНК. В любом случае они имеют мишень в организме человека, поэтому по сравнению с лактамными препаратами более токсичны, и должны использоваться только при невозможности применения последних.

¨ Синтетические антибактериальные препараты

Синтетические антибактериальные препараты ( табл. 9.4) также имеют различные механизмы действия: ингибирование ДНК-гиразы, нарушение включения ПАБК в ДГФК и т.д. Также рекомендуются к применению при невозможности использования лактамных антибиотиков.

¨ Побочные эффекты антимикробных препаратов,

их профилактика и лечение

Антимикробные препараты обладают целым рядом разнообразных побочных эффектов, некоторые из которых могут привести к тяжелым осложнениям и даже к летальному исходу.

Аллергические реакции могут иметь место при применении любого антимикробного препарата. Могут развиться аллергический дерматит, бронхоспазм, ринит, артрит, отек Квинке, анафилактический шок, васкулит, нефрит, волчаночноподобный синдром. Чаще всего они наблюдаются при применении пенициллинов и сульфаниламидов. У некоторых пациентов развивается перекрестная аллергия на пенициллины и цефалоспорины. Зачастую отмечаются аллергии на ванкомицин и сульфаниламиды. Очень редко дают аллергические реакции аминогликозиды и левомицетин.

Профилактике способствует тщательный сбор аллергологического анамнеза. Если пациент не может указать, на какие именно антибактериальные препараты в у него наблюдались аллергические реакции, перед введением антибиотиков необходимо выполнение проб. Развитие аллергии независимо от тяжести реакции требует немедленной отмены вызвавшего ее препарата. В последующем введение даже сходных по химической структуре антибиотиков (например, цефалоспоринов при аллергии на пенициллин) допускается только в случаях крайней необходимости. Лечение инфекции должно быть продолжено препаратами других групп. При тяжелых аллергических реакциях требуется внутривенное введение преднизолона и симпатомиметиков, инфузионная терапия. В нетяжелых случаях назначаются антигистаминные препараты.

Раздражающее действие на путях введения

При пероральном применении раздражающее действие может выражаться в диспепсических явлениях, при внутривенном введении – в развитии флебитов. Тромбофлебиты чаще всего вызывают цефалоспорины и гликопептиды.

Суперинфекция, в том числе дисбактериоз

Вероятность дисбактериоза зависит от широты спектра действия препарата. Наиболее часто возникающий кандидомикоз развивается при применении препаратов узкого спектра через неделю, при применении препаратов широкого спектра – уже от одной таблетки. Однако цефалоспорины относительно редко дают грибковую суперинфекцию. На 1 месте по частоте и тяжести вызываемого дисбактериоза находится линкомицин. Нарушения флоры при его применении могут принять характер псевдомембранозного колита – тяжелого заболевания кишечника, вызываемого клостридиями, сопровождающегося диареей, дегидратацией, электролитными нарушениями, и в отдельных случаях осложняющегося перфорацией толстой кишки. Гликопептиды тоже могут вызвать псевдомембранозный колит. Часто вызывают дисбактериоз тетрациклины, фторхинолоны, левомицетин.

Дисбактериоз требует отмены применявшегося препарата и длительного лечения эубиотиками после предварительной антимикробной терапии, которая проводится по результатам чувствительности микроорганизма, вызвавшего воспалительный процесс в кишечнике. Применяемые для лечения дисбактериоза антибиотики не должны оказывать влияния на нормальную кишечную аутофлору – бифидо- и лактобактерии. Однако при лечении псевдомембранозного колита используется метронидазол или, как альтернатива, ванкомицин. Необходима также коррекция водно-электролитных нарушений.

Нарушение толерантности к алкоголю — свойственно всем лактамным антибиотикам, метронидазолу, левомицетину. Проявляется появлением при одновременном употреблении алкоголя тошноты, рвоты, головокружения, тремора, потливости и падения артериального давления. Пациенты должны быть предупреждены о недопустимости приема алкоголя на весь период лечения антимикробным препаратом.

Органоспецифичные побочные эффекты для различных групп препаратов:

· Поражение системы крови и кроветворения – присущи левомицетину, реже линкосомидам, цефалоспоринам 1 поколения, сульфаниламидам, производным нитрофурана, фторхинолонам, гликопептидам. Проявляется апластической анемией, лейкопенией, тромбицитопенией. Необходима отмена препарата, в тяжелых случаях заместительная терапия. Геморрагический синдром может развиться при применении цефалоспоринов 2-3 поколения, нарушающих всасывание витамина К в кишечнике, антисинегнойных пенициллинов, нарушающих функции тромбоцитов, метронидазола, вытесняющего кумариновые антикоагулянты из связей с альбумином. Для лечения и профилактики используются препараты витамина К.

· Поражение печени – присущи тетрациклинам, которые блокируют ферментную систему гепатоцитов, а также оксациллину, азтреонаму, линкозаминам и сульфаниламидам. Холестаз и холестатический гепатит могут вызвать макролиды, цефтриаксон. Клиническими проявлениями служит повышение печеночных ферментов и билирубина в сыворотке крови. При необходимости применения гепатотоксических антимикробных средств более недели необходим лабораторный контроль перечисленных показателей. В случае повышения АСТ, АЛТ, билирубина, щелочной фосфатазы или глутамилтранспептидазы лечение должно быть продолжено препаратами других групп.

· Поражение костей и зубов характерны для тетрациклинов, растущих хрящей – для фторхинолонов.

· Поражение почек присуще аминогликозидам и полимиксинам, которые нарушают функции канальцев, сульфаниламидам, вызывающим кристаллурию, цефалоспоринам поколения, вызывающим альбуминурию, и ванкомицину. Предрасполагающими факторами являются старческий возраст, заболевания почек, гиповолемия и гипотензия. Поэтому при лечении данными препаратами необходима предварительная коррекция гиповолемии, контроль диуреза, подбор доз с учетом функции почек и массы ткла, Курс лечения должен быть коротким.

Читайте также:  Гравити фолз тест кто ты для персонажей

· Миокардит – побочный эффект левомицетина.

· Диспепсия, не являющаяся следствием дисбактериоза, характерна при применении макролидов, которые обладают прокинетическими свойствами.

· Различные поражения ЦНС развиваются от многих антимикробных препаратов. Наблюдаются:

— психозы при лечении левомицетином,

— парезы и периферические параличи при применении аминогликозидов и полимиксинов за счет их курареподобного действия (поэтому их нельзя применять одновременно с миорелаксантами),

— головная боль и центральная рвота при использовании сульфаниламидов и нитрофуранов,

— судороги и галлюцинации при использовании аминопенициллинов и цефалоспоринов в высоких дозах, являющиеся результатом антагонизма этих препаратов с ГАМК,

— судороги при применении имипенема,

— возбуждение при использовании фторхинолонов,

— менингизм при лечении тетрациклинами из-за увеличения ими продукции ликвора,

— нарушения зрения при лечении азтреонамом и левомицетином,

— периферическая нейропатия при применении изониазида, метронидазола, левомицетина.

· Поражение слуха и вестибулярные расстройства – побочный эффект аминогликозидов, более свойственный 1 поколению. Так как данный эффект связан с накоплением препаратов, длительность их применения не должна превышать 7 дней. Дополнительными факторами риска являются старческий возраст, почечная недостаточность и одновременное применение петлевых диуретиков. Обратимые изменения слуха вызывает ванкомицин. При появлении жалоб на снижение слуха, головокружение, тошноту, неустойчивость при ходьбе необходима замена антибиотика на препараты других групп.

· Поражения кожи в виде дерматита характерны для левомицетина. Тетрациклины и фторхинолоны вызывают фотосенсибилизацию. При лечении этими препаратами не назначаются физиотерапевтические процедуры, и следует избегать нахождения на солнце.

· Гипофункцию щитовидной железы вызывают сульфаниламиды.

· Тератогенность присуща тетрациклинам, фторхинолонам, сульфаниламидам.

· Возможен паралич дыхательной мускулатуры при быстром внутривенном введении линкомицина и кардиодепрессия при быстром внутривенном введении тетрациклинов.

· Электролитные нарушения вызывают антисинегнойные пенициллины. Особо опасно развитие гипокалиемии при наличии заболеваний сердечно-сосудистой системы. При назначении данных препаратов необходим контроль ЭКГ и электролитов крови. При лечении используют инфузионно-корригирующую терапию и диуретики.

Эффективность микробиологической диагностики, абсолютно необходимой для рационального подбора антимикробной терапии, зависит от соблюдения правил забора, транспортировки и хранения исследуемого материала. Правила забора биологического материала включают:

— взятие материала из области, максимально приближенной к очагу инфекции,

— предотвращение контаминации другой микрофлорой.

Транспортировка материала должна с одной стороны обеспечить жизнеспособность бактерий, а с другой — предотвратить их размножение. Желательно, чтобы материал хранился до начала исследования при комнатной температуре и не более 2 часов. В настоящее время для забора и транспортировки материала используются специальные плотно закрывающиеся стерильные контейнеры и транспортные среды.

В не меньшей степени эффективность микробиологической диагностики зависит от грамотной интерпретации результатов. Считается, что выделение патогенных микроорганизмов даже в малых количествах всегда позволяет отнести их к истинным возбудителям заболевания. Условно патогенный микроорганизм считают возбудителем, если он выделяется из стерильных в норме сред организма или в большом количестве из сред, не характерных для его обитания. В противном случае он является представителем нормальной аутофлоры либо контаминирует исследуемый материал в процессе забора или исследования. Выделение малопатогенных бактерий из нехарактерных для их обитания областей в умеренных количествах свидетельствует о транслокации микроорганизмов, однако не позволяет отнести их к истинным возбудителям заболевания.

Гораздо сложнее бывает интерпретировать результаты микробиологического исследования при высевании нескольких видов микроорганизмов. В таких случаях ориентируются на количественное соотношение потенциальных возбудителей. Чаще значимыми в этиологии данного заболевания бывают 1-2 из них. Следует иметь в виду, что вероятность равной этиологической значимости более чем 3 различных видов микроорганизмов незначительна.

В основе лабораторных тестов на выработку грамотрицательными микроорганизмами БЛРС лежит чувствительность БЛРС к ингибиторам бета-лактамаз, таким как клавулановая кислота, сульбактам и тазобактам. При этом, если микроорганизм семейства энтеробактерий оказывается резистентен к цефалоспоринам 3 поколения, а при добавлении к этим препаратам ингибиторов бета-лактамаз демонстрирует чувствительность, то данный штамм идентифицируется как БЛРС-продуцирующий.

Антибиотикотерапия должна быть направлена только на истинный возбудитель инфекции! Однако в большинстве стационаров микробиологические лаборатории не могут установить этиологию инфекции и чувствительность возбудителей к антимикробным препаратам в день поступления больного, поэтому неизбежным является первичное эмпирическое назначение антибиотиков. При этом учитываются особенности этиологии инфекций различных локализаций, характерные для данного лечебного учреждения. В связи с чем необходимы регулярные микробиологические исследования структуры инфекционных заболеваний и чувствительности их возбудителей к антибактериальным препаратам в каждом стационаре. Анализ результатов такого микробиологического мониторинга необходимо проводить ежемесячно.

Источник

Микрокапсулы

  • Микрокапсулы — капсулы, состоящие из тонкой оболочки из полимерного или другого материала, шарообразной или неправильной формы, размером от 1 мкм до 2 мм, содержащей твердые или жидкие активные действующие вещества с добавлением или без добавления вспомогательных веществ.

В фармацевтической промышленности микрокапсулы нашли наиболее широкое применение. В процессе микрокапсулирования:

* стабилизируют неустойчивые препараты (витамины, антибиотики, вакцины, сыворотки, ферменты),

* маскируют вкус горьких и тошнотворных лекарственных веществ (касторовое масло, рыбий жир, экстракт алоэ, кофеин, хлорамфеникол, бензедрин),

* превращают жидкости в сыпучие продукты,

* регулируют скорость высвобождения или обеспечивают высвобождение фармацевтических препаратов в нужном участке желудочно-кишечного тракта,

* изолируют несовместимые препараты,

создают новые типы продуктов диагностического назначения (капсулированные нестабильные реагенты для анализа крови и мочи, терморегистрирующие пленки, а также уголь и ионообменные смолы).Большинство фармацевтических препаратов производят в микрокапсулированном виде с целью увеличения продолжительности терапевтического действия при пероральном введении в организм с одновременным снижением максимального уровня концентрации препарата в организме. Этим способом удается сократить по крайней мере вдвое число приёмов препарата и ликвидировать раздражающее действие на ткани, вызываемое прилипанием таблеток к стенкам желудка.

Микрокапсулированные препараты лучше хранить и удобнее дозировать. Гастролабильные препараты заключают в оболочки, устойчивые в кислых средах и разрушающиеся в слабощелочных и нейтральных средах кишечника.

Важная область применения микрокапсулирования в фармацевтике — совмещение в общей дозировке лекарственных веществ, несовместимых при смешении в свободном виде.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Порошки (лат. Pulvis) — твёрдая лекарственная форма для внутреннего или наружного применения, состоящая из одного или нескольких измельченных веществ и обладающая свойством сыпучести. Это всесторонне свободные дисперсные системы без дисперсионной среды с дисперсионной фазой в виде мелких твёрдых частиц различной формы.

Гептахлóр — хлорорганическое соединение, из группы полихлорциклодиенов — это группа препаратов, которая после внесения в почву сравнительно быстро окисляется, высокотоксичный несистемный инсектицид контактного действия, весьма стоек к разрушению, относится к так называемой «грязной дюжине».

Йодсодержащий контрастный препарат — рентгеноконтрастное вещество, содержащее йод, который повышает интенсивность рентгеновского изображения сосудистых структур и внутренних органов при его введении в организм. Изображение сосудов, органов мочевыделительной системы и некоторых патологических образований, например, гиперваскулярных опухолей или сосудистых мальформаций, интенсивно усиливается при внутривенном введении йодсодержащего контрастного препарата. При пероральном введении йодсодержащие препараты.

MTT-тест — колориметрический тест для оценки метаболической активности клеток. НАДФ-H-зависимые клеточные оксидоредуктазные ферменты могут, при определенных условиях, отражать количество жизнеспособных клеток. Эти ферменты способны восстанавливать тетразолиевый краситель 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-тетразолиум бромид в нерастворимый формазан, который имеет пурпурное окрашивание. Другие близкородственные тетразолиевые красители: XTT, MTS и WST, которые используются в связи с промежуточным.

Источник

Поделиться с друзьями
Наши факторы