Что является характерной особенностью процесса намагничивания ферромагнетиков тест

НАМАГНИЧИВАНИЕ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ

Материалы, обладающие большой магнитной проницаемостью, назы- вают ферромагнитными (железо, никель, кобальт и их сплавы). Оказав- шись во внешнем магнитном поле, эти материалы значительно усиливают его. Это явление упрощенно можно объяснить таким образом.

Ферромагнитные материалы имеют области самопроизвольного намагничи- вания. Магнитное состояние таких областей (доменов) характеризуется век- тором намагниченности, которые ориентированы случайным образом. Поэ- тому намагниченность ферромагнитных тел в отсутствие внешнего маг- нитного поля не проявляется. Если ферромагнитное тело поместить во внеш- нее магнитное поле, то под его воздействием произойдут изменения, в ре -зультате которых векторы намагниченности отдельных областей будут ориентированы в направлении внешнего поля. Индукция результирующего магнитного поля будет определяться как индукцией внешнего поля, так и магнитной индукцией отдельных доменов, т. е. результирующее значение индукции будет намного превышать ее начальное значение. Таким образом, суммарное магнитное поле значительно превысит внешнее поле.

Магнитное состояние ферромагнитного поля и характеризуется кривой намагничивания (рис. 2.7). Рассмотрим процесс намагничивания ферромаг- нитного сердечника, помещенного в катушку с током. По мере увеличе- ния тока в катушке магнитная индукция в сердечнике быстро возрастает Это объясняется ориентацией векторов намагниченности ферромагнитного сердечника. Затем интенсивность ориентации замедляется, точка 2 соответ-

ствует магнитному насыщению. т. е. при некотором значении напряженности поля все домены сориентированы и при дальнейшем увеличении тока в катушке индукция поля растет так же, как она росла бы при отсутствии сердечника.

Если через катушку пропускать ток, меняющий свое направление, то сер- дечник будет перемагничиваться. Рассмотрим этот процесс (рис. 2.8). При увеличении тока в катушке магнитная индукция возрастает до индукции насыщения (точка а). При уменьшении тока магнитная индукция снижа- ется но так, что при тех же значениях Н она оказывается больше значе- ний магнитной индукции, соответствующих увеличению тока. Это объяс- няется тем, что часть доменов сохраняет свою ориентацию. Таким обра- зом, при Н = 0 в сердечнике сохраняется магнитное поле, характери- зуемое остаточной индукцией Вr (точка 6). При увеличении тока в противополож ном направлении магнитное поле катушки компенсирует магнитное поле, созданное доменами сердечника. При напряженности поля Нс (точка с), которая называется коэрцитивной силой, магнитная индук ция окажется равной нулю. Дальнейшее увеличение тока в катушке вызо- вет перемагничивание сердечника, т. е. поворот векторов намагниченности на 180°. При некотором значении Н (точка d) сердечник снова будет на-сыщаться. При уменьшении тока в катушке до нуля индукция будет умень- шаться до остаточной индукции (точка е). Увеличение тока в положитель- ном направлении вызовет намагничивание сердечника до исходного состоя- ния (точка а). Полученную кривую называют петлей г и с т е р и з и с а (запаздывания). Участок 0а характеристики намагничивания назы- вают основной кривой намагничивания.

Процесс перемагничивания связан с затратами энергии и сопровожда- ется выделением теплоты. Энергия, которая затрачивается за один цикл перемагничивания, пропорциональна площади, ограниченной петлей гистерезиса. В зависимости от вида петли гистерезиса ферромагнитные материалы подразделяют на магнитомягкие и магнитотвердые. Магнито-. мягкие материалы обладают круто поднимающейся основной кривой намаг- ничивания и относительно малыми площадями гистерезисных петель. Для магнитотвердых материалов характерны пологость основной кри -вой намагничивания и большая площадь гистерезисной петли.

Источник

Намагничивание ферромагнетиков

date image2014-02-24
views image12661

facebook icon vkontakte icon twitter icon odnoklasniki icon

Ферромагнетики(железо, никель, кобальт и их сплавы с алюминием, медью, хромом, серебром) – это сильномагнитные материалы, у которых магнитная проницаемость (μ) намного больше единицы.

Электроны в ферромагнетиках, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи, которые создают отдельные самопроизвольно намагниченные области (домены), имеющие разные направления микроскопических внутренних магнитных полей (рис. 2.6, а). Если ферромагнетик поместить во внешнее магнитное поле, то все домены разворачиваются вдоль внешнего поля, то есть ферромагнетик намагничивается (рис. 2.6, б).

а) б)

Поместим ферромагнитный сердечник в катушку с током I. (рис. 2.7). Ток, протекающий по катушке, создает вокруг витков катушки магнитное поле с напряженностью Н. Ферромагнитный сердечник под действием этого поля будет намагничиваться, т.е. в нем создается магнитная индукция В. Если по катушке протекает переменный ток частотой 50 Гц, (изменяющийся по величине и направлению 50 раз в секунду), то ферромагнитный сердечник в такой катушке будет перемагничиваться с такой же частотой.

Рис. 2.8 Петля гистерезиса Рис. 2.9

Петля гистерезиса (кривая намагничивания) — это график зависимости магнитной индукции ферромагнетика — В от напряженности магнитного поля — Н при намагничивании ферромагнетика (рис. 2.8).

Последовательность намагничивания ферромагнетика (рис. 2.8)

1) Кривая намагничивания начинается из нуля (точка 0), то есть, при Н = 0, В = 0.

2) При увеличении напряженности поля (Н), магнитная индукция (В) быстро растет (участок 0А) и достигает предельного значения +Вм (горизонтальный участок после точки А).

3) При уменьшении Н, магнитная индукция В тоже уменьшается, но медленнее (участок АВ).

При Н = 0 магнитная индукция имеет значение Вrостаточная индукция.

4) При изменении направления намагничивающего тока меняется и направление напряженности поля (участок БГ). При Н = Нс (точка Г), по­лучим индукцию В = 0. Значение Нс называетсякоэрцитивной силой.

5) При дальнейшем увеличении Н обратного направления (участок ГД) маг­нитная индукция достигнет зна­чения –Вм – максимальная намагниченность обратного направления.

6) При уменьшении Н до нуля (участок ДЕ), получим уменьшение В до значения остаточной индук­ции (отрезок ОЕ).

7) Изменив еще раз направление Н и увеличивая ее (участок ЕЖА), снова получим остаточную индукцию +Вr

Площадь петли гистерезиса пропорциональна энергии, затрачиваемой на намагничивание, поэтому ферромагнетики с узкой петлей гистерезиса легко перемагничиваются и наоборот.

Читайте также:  Таможенные операции это тест

Потери на гистерезис — это потери электроэнергии на нагрев при перемагничивании ферромагнетиков.

Магнитомягкие материалы – это ферромагнитные материалы с узкой петлей гистерезиса (рис. 2.9, а) и малыми потерями на гистерезис (техническое железо, низкоуглеродистая сталь, железо-никелевые сплавы). Применяются для изготовления магнитопроводов трансформаторов и электрических машин.

Магнитотвердые материалы – это ферромагнетики с широкой петлей гистерезиса (рис. 2.9, б), то есть с большой остаточной индукцией (Вr) (углеродистые, вольфрамовые, хромистые, кобальтовые стали). Применяются для изготовления постоянных магнитов.

Источник

Ферромагнетики и их свойства

Кроме диамагнетиков и парамагнетиков, являющихся слабомагнитными веществами,существуют еще сильномагнитные вещества – ферромагнетики. Ферромагнетики обладают спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля.

Если для слабомагнитных веществ зависимость от линейная функция, то для ферромагнетиков эта зависимость, впервые изученная в 1878 г. русским физиком А. Г. Столетовым (1839—1896), является существенно нелинейной функцией. По мере возрастания намагниченность сначала растет быстро, затем медленнее и, наконец, достигается так называемое магнитное насыщение , не зависящее от напряженности поля (рис. 14.6(а)).

Рис. 14.6

Зависимость магнитной индукции приведена на рис. 14.6(б). В отличие от кривой ,зависимость не имеет насыщения и при > растет линейно.

Магнитная проницаемость ферромагнетиков по порядку величин лежит в пределах 10 2 –10 5 . Например, у стали 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000.

К рассматриваемой группе ферромагнетиков относятся четыре химических элемента: железо, никель, кобальт, гадолиний, их сплавы и соединения.

Из них наибольшей магнитной проницаемостью обладает железо(ferrum – Fe). Поэтому вся эта группа получила название ферромагнетиков.

Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы – ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360 °C.

Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не сопровождается поглощением или выделением теплоты, т. е. в точке Кюри происходит фазовый переход II рода.

Ферромагнитные материалы делятся на две большие группы – магнитомягкие и магнитотвердые материалы. Магнитомягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнитомягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнитотвердые материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнитотвердых материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнитотвердые материалы используются в основном для изготовления постоянных магнитов.

Магнитная проницаемость ферромагнетиков не является постоянной величиной; она сильно зависит от напряженности внешнего магнитного поля. Типичная зависимость приведена на рис. 14.7. В справочниках обычно приводятся значения максимальной магнитной проницаемости.

Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукции магнитного поля в ферромагнетике от напряженности внешнего магнитного поля.

Рис. 14.7

Характерной особенностью процесса намагничивания ферромагнетиков является наличие гистерезиса, то есть зависимость намагничивания от предыстории материала. Кривая намагничивания ферромагнитного материала с учетом гистерезиса приведена на рис. 14.8. Она представляет собой петлю сложной формы, которая называется петлей гистерезиса.

Рис. 14.8

При увеличении от нуля до магнитная индукция возрастает от нуля до . Если затем уменьшать напряженность и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно . Остаточная намагниченность образцов позволяет создавать постоянные магниты. Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести его напряженность до значения , которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рис. 14.8.

У магнитомягких материалов значения коэрцитивной силы невелико – петля гистерезиса таких материалов достаточно узкая. Материалы с большим значением коэрцитивной силы, то есть имеющие широкую петлю гистерезиса, относятся к магнитотвердым материалам.

Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка 10 –2 –10 –4 см. Эти области называются доменами. Каждый домен представляет собой небольшой постоянный магнит.

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей доменов ориентированы в большом кристалле хаотически. Такой кристалл в среднем оказывается ненамагниченным. При наложении внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение.

Дата добавления: 2015-08-04 ; просмотров: 2354 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Намагничивание ферромагнетика.

Этапы намагничивания

Намагничивание ферромагнетиков представляет собой про-цесс, состоящий из нескольких этапов.

На первом этапе при увеличении напряжённости внешнего магнитного поля увеличиваются размеры тех доменов, у которых собственный магнитный момент образует с внешним полем острый угол. При этом уменьшается объём тех доменов, у кото-рых этот угол тупой.

Читайте также:  Тест тревожности темпл амен дорки интерпретация

* Обычно размеры домена составляют 10 -4 …10 -5 м.

К концу первого этапа домены, у которых упомянутый угол острый, полностью поглощают те, у которых угол между собственным и внешним магнитным полем тупой.

Этот этап намагничивания называют этапом смещения границ.

На втором этапе дальнейшее увеличение напряжённости внешнего магнитного поля вызывает поворот магнитных мо-ментов доменов в сторону внеш-него магнитного поля.

Второй этап намагничивания называют этапом вращения.

К концу второго этапа маг-нитные моменты всех доменов направлены по внешнему магнит-ному полю. По окончании этого этапа наступает третий этап намагничивания – этап насыщения.

В ходе первого и второго этапов намагничивания поле внутри ферромагнетика растёт за счёт увеличения как внешнего магнитного поля, так и магнитного поля, созданного доменами.

На третьем этапе увеличение магнитного поля в ферромагнетике происходит только за счёт роста внешнего магнитного поля. Суммарное магнитное поле доменов не изменяется.

Явление гистерезиса

Если уменьшать магнитное поле, которое вызвало намаг-ничивание ферромагнетика, то окажется, что зависимость индук-ции магнитного поля в ферромагнетике от напряжённости внешнего магнитного поля не совпадает с начальной кривой намагничивания.

При уменьшении напряжённости внешнего магнитного поля до нуля, маг-нитное поле в ферромагнетике не умень-шится до нуля. Индукция магнитного поля в ферромагнетике окажется равной Вост – остаточной индукции поля в фер-ромагнетике. Другими словами – образец ферромагнетика после выключения внешнего магнитного поля останется на-
агниченным.

Для того, чтобы уменьшить индукцию магнитного поля в ферромагнетике до нуля, необходимо изменить направление внешнего магнитного поля на противоположное и начать постепенное увеличение его напряжённости.

При некоторой напряжённости Нс индукция поля в ферромагнетике уменьшится до нуля. Эту напряжённость приня-то называть коэрцитивной силой.

Дальнейшее увеличение напряжённости вызывает намаг-ничивание ферромагнетика. Направление намагничивания противоположно первоначальному.

Если после намагничивания до насыщения вновь уменьшать напряжённость внешнего магнитного поля, то процесс пойдёт так, как показано на рисунке.

График зависимости В(Н) замкнётся, образовав так называемую петлю гистерезиса. Само рассматриваемое явление называется явлением гистерезиса.

Явление гистерезиса заключается в том, что значение В при данном Н зависит от того, какое значение Н имела ранее. Например, если ферромагнетик не намагничен, то при Н = 0 В = 0.

Если ферромагнетик ранее находился в магнитном поле с
Н > 0, то при Н = 0 В = Вост.

Если же ранее напряжённость была отрицательной, то при
Н = 0 В =- Вост.

Ферромагнетики делят на две группы. Основанием для клас-сификации является коэрцитивная сила.

Коэрцитивная сила показывает, насколько трудно раз-магнитить ферромагнетик. Если коэрцитивная сила велика, то ферромагнетик размагнитить трудно. Такие ферромагнетики на-зывают магнитожёсткими. Из жёстких ферромагнетиков изго-тавливают постоянные магниты.

Если коэрцитивная сила мала, ферромагнетик можно размагнитить, почти не затрачивая на это энергию. Такие ферромагнетики называют магнитомягкими. Из них изготав-ливают сердечники трансформаторов.

4.7. Граничные условия для векторов В и Н

Рассмотрим магнитное поле вблизи границы раздела двух сред с различной магнитной проницаемостью m1 и m2.

Допустим, что магнитное поле не перпендикулярно границе раздела двух сред.

Разложим векторы В и Н на две компоненты, из которых одна параллельна границе раздела двух сред, а вторая – перпендикулярна. Перпендикулярную компоненту назовём нормальной, а параллельную – тангенциальной.

Начнём с рассмотрения нормальной компоненты вектора магнитной индукции Вn. Воспользуемся для этого теоремой Гаусса для магнитного поля (см. разд. 8,8).

Выделим вблизи границы раздела двух сред цилиндрический объём бесконечно малой высоты с площадью основания DS. Верхнее основание расположено в среде с магнитной проницаем-остью m1, а нижнее – в среде с m2.

Согласно теореме Гаусса, маг-нитный поток через замкнутую поверх-ность равен нулю.

В данном случае полный маг-нитный поток через выбранную поверхность равен сумме потоков Вn через верхнее и нижнее основания и через боковую поверхность цилиндра.

Поскольку высота боковой поверхности бесконечно мала, магнитный поток через неё бесконечно мал. Следовательно, полный магнитный поток равен сумме потоков через верхнее и нижнее основания.

Полный магнитный поток нормальной компоненты вектора магнитной индукции равен нулю, следовательно, потоки через верхнее и нижнее основания равны между собой

Это означает, что нормальная компонента вектора магнитной индукции на границе раздела двух сред не изменяется

По определению напряжённости В = mmН, поэтому

.

Таким образом, нормальная компонента вектора напряжён-ности магнитного поля на границе раздела двух сред изменяется. Значение нормальной составляющей напряжённости магнитного поля в средах с разной магнитной проницаемостью различно.

Перейдём к рассмотрению тангенциальной компоненты векторов В и Н. Воспользуемся для этого теоремой о циркуляции вектора напряжённости магнитного поля (см. разд. 4.2.).

Выделим вблизи границы раздела двух сред замкнутый контур 1234 прямоугольной формы (см. рисунок).

Длина горизонтальной стороны прямоугольника равна l, а высота прямоугольника бесконечно мала.

Если на границе раздела двух сред нет тока, то , т. е. циркуляция вектора напряжённости магнитного поля на границе раздела двух сред равна нулю.

Компоненты циркуляции по сторонам прямоугольника, перпендикулярным границе разделы пренебрежимо малы, так как высота прямоугольника бесконечно мала.

Компоненты циркуляции по параллельным сторонам соответственно равны и .

Если длина участков 12 и 34 настолько мала, что напряжённости можно считать постоянными, то Н1 и Н2 можно вынести за знак интеграла. Тогда в результате интегрирования получим векторы l12 и l34, направление которых определяется направлением обхода контура.

Таким образом, циркуляция вектора напряжённости на границе раздела двух сред оказывается равной H1 . l12 + H2 . l34 = 0.

Учитывая, что скалярное произведение двух векторов равно произведению их модулей на косинус угла между ними, получаем

(минус обусловлен тем, что векторы l12 и l34 противоположны по направлению).

Читайте также:  Тест свеча кнопки и спички

Следовательно, тангенциальная составляющая вектора напряжённости магнитного поля в средах с разной магнитной проницаемостью одинакова:

Тангенциальная составляющая вектора магнитной индукции при переходе из одной среды в другую изменяется

.

Полученные результаты означают, что силовые линии маг-нитного поля на границе раздела двух магнетиков преломляются
(т. е. изменяют свой наклон)

.

На рисунке показано, что в среде с большей магнитной проницаемостью (m1 > m2) силовые линии отклоняются от нор-мали к границе раздела двух сред (это значит, что их густота уве-личивается).

Из полученных результатов также следует, что если в образ-це магнетика сделать узкую щель, параллельную силовым линиям магнитного поля в ве-ществе, то напряжённость маг-нитного поля в щели будет равна напряжённости магнитного поля внутри магнетика. Это вытекает из того, что тангенциальная составляющая вектора напряжён-ности магнитного поля на границе раздела двух сред не изменяется.

Поскольку нормальная составляющая вектора магнитной индукции не изменяется на границе раздела, постольку значение индукции магнитного поля внутри магнетика и в узкой щели, перпендикулярной направлению магнитного поля, одинакова.

Эти особенности в поведении тангенциальной составляющей напряжённости и нормальной составляющей индукции магнит-ного поля лежат в основе методов практических измерений напряжённости и индукции магнитного поля внутри магнетиков.

Источник

Намагничивание ферромагнетиков

А. Г. Столетов Материалы, обладающие большой магнитной проницаемостью, которым относятся: сталь, железо, чугун, кобальт и ряд сплавов, например никеля с алюминием, получили название ферромагнетиков. При внесении ферромагнитного сердечника в слабое магнитное поле, например катушки с током, магнитная индукция поля возрастает в сотни или тысячи раз.

Магнитные свойства ферромагнетиков объясняются наличием в них самопроизвольно намагниченных микроскопических областей, которые для упрощения можно рассматривать как элементарные магнитики. Под действием внешнего поля, например магнитного поля катушки с током, эти магнитики поворачиваются в направлении поля, вызывая этим усиление магнитной индукции. В магнитной цепи, состоящей преимущественно из ферромагнитных участков, можно получить значительную магнитную индукцию при относительно малой магнитодвижущей силе.

А. Г. Столетов (1839—1896).

В 1872 г. профессор Московского университета А. Г. Столетов впервые исследовал изменение магнитных свойств стали от напряженности магнитного поля. Изменение напряженности поля производилось изменением тока в намагничивающей катушке, в поле которой помещалась сталь.

А. Г. Столетовым была получена зависимость магнитной индукции от напряженности поля, т. е. В = f (H), которая выражается кривой начального намагничивания (рис. 3-23). Кривую можно разделить на три участка: 1) прямолинейный участок Оа, который показывает, что магнитная индукция быстро растет почти пропорционально напряженности поля; 2) участок аб — колено кривой, который характеризует замедление роста магнитной индукции; 3) участок магнитного насыщения — участок, расположенный выше точки б, здесь зависимость между В и Н снова прямолинейна, но рост магнитной индукции значительно замедлен по сравнению с первым участком. Этот участок кривой соответствует магнитному насыщению сердечника, при котором почти все элементарные магнитики ориентированы вдоль поля. Рассмотренная нелинейная зависимость указывает на то, μчто абсолютная магнитная проницаемость ферромагнитных материалов μa= В/Н непостоянна и зависит от напряженности магнитного поля, а следовательно, и тока намагничивающей катушки. Рассмотрим процесс перемагничивания ферромагнетиков, который имеет место при работе их в цепях переменного тока.

Намагничивание ферромагнетиков Петля гистерезиса

При увеличении намагничивающего тока, а следовательно, и напряженности поля Н магнитная индукция достигнет максимального значения М (рис. 3-24).

Рис 3-23. Начальная кривая намагничивания стали.

Рис. 3-24. Петля гистерезиса

Затем при уменьшении напряженности поля будет уменьшаться и магнитная индукция, но при одних и тех же напряженностях магнитная индукция будет несколько большей, чем при увеличении напряженности (участок кривой А Б). При нулевой напряженности поля магнитная индукция будет иметь значение Вr называемое остаточной индукцией (отрезок ОБ).

Явление отставания или запаздывания изменений магнитной индукции от соответствующих изменений напряженности поля называется магнитным гистерезисом и обусловлено как бы внутренним трением областей самопроизвольного намагничивания.

При изменении направления намагничивающего тока, а следовательно, и направления напряженности поля она достигнет значения Нс, называемого коэрцитивной силой (отрезок ОГ), при котором магнитная индукция В = 0.

При дальнейшем увеличении тока обратного направления магнитная индукция достигнет значения — Bм.

Три петли гистерезиса и основная кривая намагничивания стали

Затем при уменьшении тока до нуля будет получена остаточная индукция (отрезок ОЕ). Наконец при следующем изменении направления тока и напряженности поля и увеличении ее вновь будет получена максимальная индукция + Bм.

Таким образом, мы проследили за изменением напряженности поля и магнитной индукции за один цикл их изменения. При циклическом перемагничивании ферромагнетика зависимость В — f (Н) графически выражается замкнутой кривой АБГДЕЖА, называемой симметричной петле гистерезиса. Наибольшая петля, которая может быть получена для данного материала, называется предельной петлей.

Рис 3-25. Три петли гистерезиса и основная кривая намагничивания стали

Если для данного ферромагнетика получить несколько симметричных петель гистерезиса c различными Вм (рис. 3-25) и соединить вершины петель л то получим кривую, называемую основной кривой намагничивания, очень близкую к кривой начального намагничивания.

Перемагничивание стали связано с затратой энергии, которая превращаясь в тепло, вызывает нагрев стали.

Площадь петли гистерезиса пропорциональна энергии, затраченной при одном цикле перемагничивания. Потери энергии, вызванные процессом перемагничивания, называются потерей от гистерезиса.

Мощность потерь на циклическое перемагничивание, выражаемая обычно в ваттах на килограмм, зависит от сорта стали, максимальной магнитной индукции и числа циклов перемагничивания стали в секунду или, что то же, частоты (f).

Рис 3-26. 1 — магнитно-мягкий материал, электротехническая сталь; 2 — магнитно мягкий материал, пермаллой; 3 — магнитно-твердый материал.

Свойства ферромагнитных материалов характеризуют основной кривой намагничивания и петлей гистерезиса. На рис. 3-26 показаны три типичные петли гистерезиса для важнейших магнитных материалов.

Статья на тему Намагничивание ферромагнетиков (магнитов)

Источник

Поделиться с друзьями
Наши факторы